chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

AI如何幫助其使用神經(jīng)網(wǎng)絡(luò)收集數(shù)據(jù)以預(yù)測未來的流量

倩倩 ? 來源:百度粉絲網(wǎng) ? 2020-09-10 09:56 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

Google Maps受到位于倫敦的AI實驗室Deep Minds的幫助,該實驗室由Google的母公司Alphabet擁有,可以為用戶提供準(zhǔn)確的結(jié)果。谷歌在博客文章中解釋了AI如何幫助其使用神經(jīng)網(wǎng)絡(luò)收集數(shù)據(jù)以預(yù)測未來的流量。

The Verge指出,這些數(shù)據(jù)包括從Android設(shè)備匿名收集的實時交通信息,歷史交通數(shù)據(jù),速度限制和當(dāng)?shù)卣慕ㄖさ氐刃畔?,以及任何給定道路的質(zhì)量,大小和方向等因素。Google地圖產(chǎn)品經(jīng)理Johann Lau在博客文章中寫道:“然后,我們使用機器學(xué)習(xí)將歷史交通模式的數(shù)據(jù)庫與實時交通狀況結(jié)合起來,以基于兩組數(shù)據(jù)生成預(yù)測?!?/p>

除了AI之外,Google還依賴于地方政府機構(gòu)的流量數(shù)據(jù)和用戶的實時反饋。

Google指出,其出行量預(yù)測對97%以上的出行始終保持準(zhǔn)確。對于明顯的預(yù)計到達時間(ETA)錯誤,Google使用Graph Neural Networks來幫助DeepMind,以幫助其實現(xiàn)準(zhǔn)確性。Google指出,它在柏林,雅加達,圣保羅,悉尼,東京和華盛頓特區(qū)都取得了進步。通過神經(jīng)網(wǎng)絡(luò),Google Maps甚至可以在行程開始之前就更好地預(yù)測行程。

根據(jù)Google的說法,自COVID 19開始以來,全球的流量模式已發(fā)生了巨大變化,因此它將優(yōu)先考慮過去兩到四周的歷史流量模式,并優(yōu)先考慮之前的任何時間。

在相關(guān)新聞中,Google Maps正在測試該應(yīng)用程序的暗模式。到目前為止,用戶可以在導(dǎo)航選項中使用暗模式,但是根據(jù)9to5Google的報告,Google可能會推出應(yīng)用范圍內(nèi)的暗模式。但是,只有APK版本由Google上傳到Play商店,這意味著它們可能會或可能不會實現(xiàn)。

Google Maps 10.5.0版本在“設(shè)置”中描述了一個新的“外觀”菜單,用戶將在其中具有三個選項:默認(rèn)為設(shè)備主題,深色主題和淺色主題。該報告指出,創(chuàng)建深色地圖可能是一項艱巨的工作,而不是像倒轉(zhuǎn)顏色那樣簡單。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • Google
    +關(guān)注

    關(guān)注

    5

    文章

    1789

    瀏覽量

    59047
  • 數(shù)據(jù)庫
    +關(guān)注

    關(guān)注

    7

    文章

    3927

    瀏覽量

    66239
  • 機器學(xué)習(xí)
    +關(guān)注

    關(guān)注

    66

    文章

    8503

    瀏覽量

    134626
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    無刷電機小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)構(gòu)與參數(shù),借助
    發(fā)表于 06-25 13:06

    神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計數(shù)據(jù)怎么查看?

    無法觀察神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計數(shù)據(jù)
    發(fā)表于 03-06 07:10

    使用BP神經(jīng)網(wǎng)絡(luò)進行時間序列預(yù)測

    使用BP(Backpropagation)神經(jīng)網(wǎng)絡(luò)進行時間序列預(yù)測是一種常見且有效的方法。以下是一個基于BP神經(jīng)網(wǎng)絡(luò)進行時間序列預(yù)測的詳細(xì)步驟和考慮因素: 一、
    的頭像 發(fā)表于 02-12 16:44 ?771次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) : CNN主要由卷積層、池化層和全連接層組成。
    的頭像 發(fā)表于 02-12 15:53 ?670次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過訓(xùn)練數(shù)據(jù)自動調(diào)整網(wǎng)絡(luò)參數(shù),實現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務(wù),無需人工進行復(fù)雜的特征工程。 泛化能力強 : BP
    的頭像 發(fā)表于 02-12 15:36 ?924次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    神經(jīng)網(wǎng)絡(luò)(即反向傳播神經(jīng)網(wǎng)絡(luò))的核心,它建立在梯度下降法的基礎(chǔ)上,是一種適合于多層神經(jīng)元網(wǎng)絡(luò)的學(xué)習(xí)算法。該算法通過計算每層網(wǎng)絡(luò)的誤差,并將這些誤差反向傳播到前一層,從而調(diào)整權(quán)重,使得
    的頭像 發(fā)表于 02-12 15:18 ?771次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    輸入層、隱藏層和輸出層組成。其中,輸入層負(fù)責(zé)接收外部輸入數(shù)據(jù),這些數(shù)據(jù)隨后被傳遞到隱藏層。隱藏層是BP神經(jīng)網(wǎng)絡(luò)的核心部分,它可以通過一層或多層神經(jīng)元對輸入
    的頭像 發(fā)表于 02-12 15:13 ?858次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    所擬合的數(shù)學(xué)模型的形式受到大腦中神經(jīng)元的連接和行為的啟發(fā),最初是為了研究大腦功能而設(shè)計的。然而,數(shù)據(jù)科學(xué)中常用的神經(jīng)網(wǎng)絡(luò)作為大腦模型已經(jīng)過時,現(xiàn)在它們只是能夠在某些應(yīng)用中提供最先進性能的機器學(xué)習(xí)模型。近年來,由于
    的頭像 發(fā)表于 01-09 10:24 ?1196次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    神經(jīng)網(wǎng)絡(luò),也稱為全連接神經(jīng)網(wǎng)絡(luò)(Fully Connected Neural Networks,F(xiàn)CNs),特點是每一層的每個神經(jīng)元都與下一層的所有
    的頭像 發(fā)表于 11-15 14:53 ?1878次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機器學(xué)習(xí)領(lǐng)域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1129次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)準(zhǔn)備方法

    : 一、數(shù)據(jù)收集與清洗 數(shù)據(jù)收集 : 根據(jù)LSTM神經(jīng)網(wǎng)絡(luò)的應(yīng)用場景(如時間序列預(yù)測、自然語言處
    的頭像 發(fā)表于 11-13 10:08 ?2119次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機制

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),設(shè)計用于解決長期依賴問題,特別是在處理時間序列數(shù)據(jù)時表現(xiàn)出色。以下是LSTM神經(jīng)
    的頭像 發(fā)表于 11-13 10:05 ?1632次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)在時間序列預(yù)測中的應(yīng)用

    時間序列預(yù)測數(shù)據(jù)分析中的一個重要領(lǐng)域,它涉及到基于歷史數(shù)據(jù)預(yù)測未來值。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,長短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)因其在處理序列
    的頭像 發(fā)表于 11-13 09:54 ?2053次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的基本原理 如何實現(xiàn)LSTM神經(jīng)網(wǎng)絡(luò)

    LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),它能夠?qū)W習(xí)長期依賴信息。在處理序列數(shù)據(jù)時,如時間序列分析、自然語言處理等,LSTM因其能夠有效地捕捉時間序列中的長期依賴關(guān)系而受到
    的頭像 發(fā)表于 11-13 09:53 ?1587次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    取特征的強大工具,例如識別音頻信號或圖像信號中的復(fù)雜模式就是應(yīng)用之一。 1、什么是卷積神經(jīng)網(wǎng)絡(luò)? 神經(jīng)網(wǎng)絡(luò)是一種由神經(jīng)元組成的系統(tǒng)或結(jié)構(gòu),它使A
    發(fā)表于 10-24 13:56