張量處理單元(TPU,Tensor Processing Unit)是一種專門為深度學(xué)習(xí)應(yīng)用設(shè)計(jì)的硬件加速器。它的開發(fā)源于對人工智能(AI)和機(jī)器學(xué)
發(fā)表于 04-22 09:41
?2629次閱讀
),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度學(xué)習(xí)的定義與發(fā)展
發(fā)表于 02-12 15:15
?1211次閱讀
,一個新的競爭力量——LPU(Language Processing Unit,語言處理單元)已悄然登場,LPU專注于解決自然語言處理(NLP)任務(wù)中的順序性問題,是構(gòu)建AI應(yīng)用不可或
發(fā)表于 12-09 11:01
?3739次閱讀
隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心部分,已經(jīng)成為推動技術(shù)進(jìn)步的重要力量。GPU(圖形處理單元)在深度
發(fā)表于 11-19 10:55
?2005次閱讀
深度學(xué)習(xí)近年來在多個領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個分支,因其在圖像
發(fā)表于 11-15 14:52
?1101次閱讀
循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)是深度學(xué)習(xí)領(lǐng)域中處理序列數(shù)據(jù)的基石。它們通過在每個時間步長上循環(huán)傳遞信息,使得網(wǎng)絡(luò)能夠捕捉時間序列數(shù)據(jù)中的長期依賴關(guān)系。然而,盡管RNN在某些任務(wù)上表現(xiàn)出色,它們
發(fā)表于 11-15 09:55
?1683次閱讀
和GPU相比,NPU在處理深度學(xué)習(xí)任務(wù)時展現(xiàn)出了顯著的優(yōu)勢。 1. 設(shè)計(jì)目的 傳統(tǒng)處理器: CPU(中央
發(fā)表于 11-15 09:29
?2047次閱讀
隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為
發(fā)表于 11-14 15:17
?2601次閱讀
深度學(xué)習(xí)模型通常需要大量的數(shù)據(jù)和強(qiáng)大的計(jì)算能力來訓(xùn)練。傳統(tǒng)的CPU計(jì)算資源有限,難以滿足深度學(xué)習(xí)的需求。因此,GPU(圖形處理
發(fā)表于 11-13 10:39
?1689次閱讀
自然語言處理(NLP)是人工智能領(lǐng)域的一個重要分支,它旨在使計(jì)算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,特別是循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其變體——長短期記憶(LSTM)網(wǎng)絡(luò)的出現(xiàn)
發(fā)表于 11-13 09:56
?1519次閱讀
深度學(xué)習(xí)模型的魯棒性優(yōu)化是一個復(fù)雜但至關(guān)重要的任務(wù),它涉及多個方面的技術(shù)和策略。以下是一些關(guān)鍵的優(yōu)化方法: 一、數(shù)據(jù)預(yù)處理與增強(qiáng) 數(shù)據(jù)清洗 :去除數(shù)據(jù)中的噪聲和異常值,這是提高模型魯棒
發(fā)表于 11-11 10:25
?1863次閱讀
掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
發(fā)表于 10-28 14:05
?916次閱讀
能力,可以顯著提高圖像識別模型的訓(xùn)練速度和準(zhǔn)確性。例如,在人臉識別、自動駕駛等領(lǐng)域,GPU被廣泛應(yīng)用于加速深度學(xué)習(xí)模型的訓(xùn)練和推理過程。 二、自然語言處理 自然語言處理(NLP)是
發(fā)表于 10-27 11:13
?1967次閱讀
信息。這使得激光雷達(dá)在自動駕駛、無人機(jī)、機(jī)器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學(xué)習(xí)技術(shù)的發(fā)展 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個分支,它通過模擬人
發(fā)表于 10-27 10:57
?1352次閱讀
FPGA(現(xiàn)場可編程門陣列)加速深度學(xué)習(xí)模型是當(dāng)前硬件加速領(lǐng)域的一個熱門研究方向。以下是一些FPGA加速深度學(xué)習(xí)模型的案例: 一、基于FPGA的AlexNet卷積運(yùn)算加速 項(xiàng)目名稱
發(fā)表于 10-25 09:22
?1568次閱讀
評論