chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于對圖像識別的深度學(xué)習(xí)算法的逐點剖析

姚小熊27 ? 來源:互聯(lián)網(wǎng) ? 作者:互聯(lián)網(wǎng) ? 2020-09-29 09:47 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

如今,深度學(xué)習(xí)已經(jīng)貫穿于我們的生活,無論是汽車自動駕駛、AI 醫(yī)學(xué)診斷,還是面部、聲音識別技術(shù),無一沒有 AI 的參與。然而,盡管人們早已明了深度學(xué)習(xí)的輸入和輸出,卻對其具體的學(xué)習(xí)過程一無所知。

近日,針對這一問題,奧本大學(xué)(Auburn university)計算機科學(xué)和軟件工程副教授 Anh Nguyen 對圖像識別的深度學(xué)習(xí)算法進(jìn)行了逐點剖析;無獨有偶,加州大學(xué)歐文分校(UC Irine) 計算機科學(xué)副教授 Sameer Singh 正在制作歸因圖(attribution maps),以幫助理解為何自然語言算法懂得與你交談,并說出一些涉及種族主義的話。

機器學(xué)習(xí)(machine learning)是人工智能的一種形式,它使用大量的數(shù)據(jù)來訓(xùn)練自己對某些問題形成算法。例如,向機器提供成千上萬張標(biāo)有“貓”的照片,它就能學(xué)會識別“貓”這一生物。

Nguyen 說,機器學(xué)習(xí)的想法可以追溯到 20 世紀(jì) 50 年代,但直到最近,計算機才能夠有效地處理大量數(shù)據(jù),并得出精確結(jié)果。到 20 世紀(jì) 90 年代,機器學(xué)習(xí)算法僅使用簡單的概念,但很明顯,現(xiàn)實生活中存在各種復(fù)雜的問題,從而需要更復(fù)雜的算法,這就是深度學(xué)習(xí)的意義所在。

與機器學(xué)習(xí)不同,深度學(xué)習(xí)(deep learning)不需要結(jié)構(gòu)化數(shù)據(jù)作為基礎(chǔ),利用人工神經(jīng)網(wǎng)絡(luò)(artificial neural net),即多個神經(jīng)元一起工作,通過這些“神經(jīng)元”來考慮數(shù)據(jù)并對數(shù)據(jù)進(jìn)行分類。

神經(jīng)網(wǎng)絡(luò)非常擅長圖像識別,當(dāng)向它們提供足夠的數(shù)據(jù)后,他們可以挑出人眼看不見的圖案或差異。利用這一點,深度學(xué)習(xí)可以實現(xiàn)自動駕駛汽車的行人偵查或腫瘤篩查。

但是, 當(dāng)出現(xiàn)超出其參數(shù)范圍的輸入時,神經(jīng)網(wǎng)絡(luò)也會崩潰。在特定的,狹窄定義的任務(wù)中,深度學(xué)習(xí)通常優(yōu)于人類,但是一旦神經(jīng)網(wǎng)絡(luò)失效時,往往會導(dǎo)致嚴(yán)重的后果。如果錯誤識別的圖像發(fā)生在腫瘤患者身上或自動駕駛車上時,后果可能是致命的。

但問題是這些系統(tǒng)是如此的密集和復(fù)雜,人類無法理解它們,對人類來說,深度學(xué)習(xí)如同一個科技黑箱。除了令人不安之外,我們無法理解的計算機程序還可以做出一些不可預(yù)測的事情,并且當(dāng)它們出錯時,很難對其進(jìn)行反向工程或糾正。

正如 Nguyen 所說, “歸根結(jié)底,我們要搞清楚為什么神經(jīng)網(wǎng)絡(luò)的行為是這樣,而不是相反。”

揭示神經(jīng)網(wǎng)絡(luò)的想法

能徹底搞亂人工智能的數(shù)據(jù)被稱為“對抗性數(shù)據(jù)”,它會導(dǎo)致一個通??煽康纳窠?jīng)網(wǎng)絡(luò)犯下奇怪的錯誤。靜態(tài)的、波浪狀的人字紋,以及五顏六色的條紋,可能被 AI 自信地識別為“蜈蚣”或“熊貓”。

不僅如此,一些常見的圖像也會讓深度學(xué)習(xí)人工智能崩潰。把消防車圖片倒過來,AI 就會看到一個大雪橇;放大一輛公共汽車的窗戶,它在 AI 眼中就變成了一個出氣筒。

“令人震驚的是,我們發(fā)現(xiàn)這些網(wǎng)絡(luò)會在某種程度上被這些奇怪的圖案所愚弄,這是我們從未想象過的。”Nguyen 表示。

為了找出原因,Nguyen 創(chuàng)建了一個叫做 DeepVis 的工具來分析神經(jīng)網(wǎng)絡(luò)算法。該工具能夠?qū)⑸钊雽W(xué)習(xí) AI 的完整程序分離開來,并顯示出單個神經(jīng)元正在識別的內(nèi)容。從這里開始,Nguyen 能夠打破深入學(xué)習(xí)AI的連續(xù)工作進(jìn)程,從而理解它是如何一步步達(dá)到最終檢測結(jié)果的。

將識別對象簡單的隨機旋轉(zhuǎn)幾次,就足以將 AI 的分類精度從 77.5% 降到3%

由于神經(jīng)網(wǎng)絡(luò)這種復(fù)雜性,對其所做的“解剖”對于人工智能開發(fā)人員最有用,提供的大量細(xì)節(jié)可以幫助科學(xué)家們更深入地理解破解黑箱所需的神經(jīng)網(wǎng)絡(luò)訓(xùn)練,就好比醫(yī)生對于腫瘤的研究一樣。

但是,即使使用 DeepVis,黑箱的秘密可能也不會完全打開。神經(jīng)元群的絕對復(fù)雜性可能讓人類難以理解,畢竟它是一個黑箱。

2016 年,來自波士頓大學(xué)和微軟研究院的研究人員為一種算法提供了 300 多萬英文單詞的數(shù)據(jù)集,數(shù)據(jù)從谷歌新聞文章中提齲研究人員重點關(guān)注那些最常用的英文單詞,然后讓算法做完形填空。

“男人(Man)之于程序員(computer programmer),那么女人(woman)之于什么”,機器通過算法“思考”后,得出答案:“家庭主婦(homemaker)”。

很明顯, AI也會發(fā)出類似于人類社會的性別歧視和種族主義言論。為了找出其中的原因,專注于破解自然語言處理(NLP)算法黑箱并提出深度學(xué)習(xí)思維(deep learning thinking)這一概念的 Sameer Singh,使用了一種叫做歸因圖(attribution map)的工具:將語言插入到文本生成 NLP 算法中,歸因圖將突出顯示某些部分,展示什么在神經(jīng)網(wǎng)絡(luò)內(nèi)部“發(fā)光”也許是一個特定的字母組合。

Singh 的團(tuán)隊首先使用某些單詞,開發(fā)出特殊的觸發(fā)器,然后,他們按照歸因圖所說的算法最“感興趣”的模板來修改這些單詞,最終的結(jié)果是一連串的文字和半拼寫錯誤,從而引發(fā)了某些看起來像“種族主義”的言論。

“突出顯示的內(nèi)容對模型的預(yù)測或輸出有很大的影響,”Singh 說,利用這些信息,可以使用故意的對抗觸發(fā)器來嘗試發(fā)現(xiàn)問題,并理解深度學(xué)習(xí)算法中的聯(lián)系。這足以讓人們了解人工智能的想法。

雖然歸因圖也有缺點,不同的地圖生成器可能彼此不一致,但是大概的理解可能是我們所能獲得的最好的理解。

AI 黑箱 VS 人類黑箱

事實上,隨著算法變得更加復(fù)雜、更加強大和不透明化,圍繞黑箱的問題也進(jìn)一步深入到哲學(xué)上:當(dāng)我們?nèi)祟愖约旱纳窠?jīng)網(wǎng)絡(luò)仍然神秘時,要求 AI 神經(jīng)網(wǎng)絡(luò)完全透明是公平的嗎?

不得不承認(rèn),人類本身的神經(jīng)網(wǎng)絡(luò)也是一個黑箱。我們雖然知道一些物理結(jié)構(gòu),知道它們是如何工作,但對“思想”和“意識”的確切含義仍不清楚。

接下來我們是否應(yīng)該思考,機器模仿人腦并繼承其精確、靈活等優(yōu)點的同時,是否也繼承了人性中的偏見?

當(dāng)然,隨著未來科學(xué)家們在深度學(xué)習(xí)領(lǐng)域中不斷取得的突破,由人類創(chuàng)造的 AI 黑箱終將變成“灰色”。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 圖像識別
    +關(guān)注

    關(guān)注

    9

    文章

    529

    瀏覽量

    39671
  • 機器學(xué)習(xí)
    +關(guān)注

    關(guān)注

    66

    文章

    8528

    瀏覽量

    135899
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5586

    瀏覽量

    123666
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    國家級認(rèn)證!拓維海云天“中文手寫體作文圖像識別評分生成算法”通過國家網(wǎng)信辦備案

    近日,國家互聯(lián)網(wǎng)信息辦公室發(fā)布第十二批深度合成服務(wù)算法備案公告,拓維海云天自主研發(fā)的核心技術(shù)成果——“中文手寫體作文圖像識別評分生成算法”成功通過備案(備案編號:250011號)。這是
    的頭像 發(fā)表于 08-15 16:42 ?995次閱讀
    國家級認(rèn)證!拓維海云天“中文手寫體作文<b class='flag-5'>圖像識別</b>評分生成<b class='flag-5'>算法</b>”通過國家網(wǎng)信辦備案

    華怡豐推出ISC-B/C系列圖像識別傳感器

    在工業(yè)自動化領(lǐng)域,精準(zhǔn)、高效的視覺檢測是提升生產(chǎn)效率的關(guān)鍵。華怡豐全新推出的ISC-B/C系列圖像識別傳感器集高精度定位、測量算法與先進(jìn)圖像處理技術(shù)于一體,為各類工業(yè)場景提供穩(wěn)定、可靠的解決方案!
    的頭像 發(fā)表于 08-15 11:36 ?910次閱讀
    華怡豐推出ISC-B/C系列<b class='flag-5'>圖像識別</b>傳感器

    手持終端集裝箱識別系統(tǒng)的圖像識別技術(shù)

    行業(yè)提供了更靈活、精準(zhǔn)的管理工具。 一、技術(shù)核心:OCR+AI深度融合 現(xiàn)代手持終端系統(tǒng)采用多模態(tài)圖像識別技術(shù),結(jié)合深度學(xué)習(xí)算法,可快速捕捉
    的頭像 發(fā)表于 04-03 10:49 ?471次閱讀

    岸橋箱號識別系統(tǒng)如何工作?揭秘AI圖像識別技術(shù)!

    在港口自動化升級的浪潮中,AI岸橋識別系統(tǒng)憑借前沿的圖像識別技術(shù),成為提升碼頭作業(yè)效率的“智慧之眼”。那么,這套系統(tǒng)如何實現(xiàn)集裝箱信息的精準(zhǔn)捕捉?又是如何通過AI技術(shù)替代傳統(tǒng)人工理貨?讓我們一探
    的頭像 發(fā)表于 04-02 09:45 ?442次閱讀

    SLAMTEC Aurora:把深度學(xué)習(xí)“卷”進(jìn)機器人日常

    在人工智能和機器人技術(shù)飛速發(fā)展的今天,深度學(xué)習(xí)與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領(lǐng)著智能機器人行業(yè)邁向新的高度。最近科技圈頂流DeepSeek簡直殺瘋了!靠著逆天的深度學(xué)習(xí)
    的頭像 發(fā)表于 02-19 15:49 ?621次閱讀

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡(luò)能夠學(xué)習(xí)到復(fù)雜的特征表達(dá),適用于處理非線性問題。以下是對BP神經(jīng)網(wǎng)絡(luò)在圖像識別中應(yīng)用的分析: 一、BP神經(jīng)網(wǎng)絡(luò)基本原理 BP神經(jīng)網(wǎng)絡(luò),即反向
    的頭像 發(fā)表于 02-12 15:12 ?988次閱讀

    如何提升人臉門禁一體機的識別準(zhǔn)確率?

    準(zhǔn)確率,可以從以下幾個方面進(jìn)行改進(jìn)。一、優(yōu)化算法與模型人臉識別的核心在于算法的優(yōu)化和模型的調(diào)整,目前深度學(xué)習(xí)技術(shù)在
    的頭像 發(fā)表于 12-10 15:05 ?1302次閱讀
    如何提升人臉門禁一體機的<b class='flag-5'>識別</b>準(zhǔn)確率?

    高幀頻圖像識別反無人機 慧視有辦法!

    的基礎(chǔ)上加裝AI高性能圖像處理板,在算法的作用下,就具備無人機識別的功能,為無人機對抗創(chuàng)造條件。由于無人機飛行速度極快,因此針對于這樣環(huán)境下的AI識別需要“與眾不
    的頭像 發(fā)表于 12-04 01:06 ?836次閱讀
    高幀頻<b class='flag-5'>圖像識別</b>反無人機   慧視有辦法!

    ASR與傳統(tǒng)語音識別的區(qū)別

    ASR(Automatic Speech Recognition,自動語音識別)與傳統(tǒng)語音識別在多個方面存在顯著的區(qū)別。以下是對這兩者的對比: 一、技術(shù)基礎(chǔ) ASR : 基于深度學(xué)習(xí)
    的頭像 發(fā)表于 11-18 15:22 ?1801次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來在多個領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度
    的頭像 發(fā)表于 11-15 14:52 ?1071次閱讀

    AI圖像識別攝像機

    ?AI圖像識別攝像機是一種集成了先進(jìn)算法深度學(xué)習(xí)模型的智能監(jiān)控設(shè)備。這些攝像機不僅能夠捕捉視頻畫面,還能實時分析和處理所拍攝的內(nèi)容,從而實現(xiàn)對特定對象、場景或行
    的頭像 發(fā)表于 11-08 10:38 ?1156次閱讀
    AI<b class='flag-5'>圖像識別</b>攝像機

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識別 圖像識別
    的頭像 發(fā)表于 10-27 11:13 ?1927次閱讀

    激光雷達(dá)技術(shù)的基于深度學(xué)習(xí)的進(jìn)步

    信息。這使得激光雷達(dá)在自動駕駛、無人機、機器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學(xué)習(xí)技術(shù)的發(fā)展 深度學(xué)習(xí)是機器學(xué)習(xí)的一個分支,它通過模擬人
    的頭像 發(fā)表于 10-27 10:57 ?1332次閱讀

    AI大模型在圖像識別中的優(yōu)勢

    大模型借助高性能的計算硬件和優(yōu)化的算法,能夠在短時間內(nèi)完成對大量圖像數(shù)據(jù)的處理和分析,顯著提高了圖像識別的效率。 識別準(zhǔn)確性 :通過深度
    的頭像 發(fā)表于 10-23 15:01 ?2947次閱讀