chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機器學(xué)習(xí)中賦予了什么數(shù)學(xué)意義

姚小熊27 ? 來源:雷鋒網(wǎng) ? 作者:雷鋒網(wǎng) ? 2020-10-14 09:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

機器學(xué)習(xí)中的用于聲稱性能的指標標準很少被討論。由于在這個問題上似乎沒有一個明確的、廣泛的共識,因此我認為提供我一直在倡導(dǎo)并盡可能遵循的標準可能會很有趣。它源于這個簡單的前提,這是我的科學(xué)老師從中學(xué)開始就灌輸給我的:

科學(xué)報告的一般規(guī)則是,您寫下的每個數(shù)字都應(yīng)為“真”的,因為“真”的定義是什么。

讓我們來研究一下這對測試性能等統(tǒng)計量意味著什么。當(dāng)你在科學(xué)出版物中寫下以下陳述時:

測試準確率為52.34%。你所表達的是,據(jù)你所知,你的模型在從測試分布中提取的未見數(shù)據(jù)上成功的概率在0.52335和0.52345之間。

這是一個非常強有力的聲明。

考慮你的測試集是從正確的測試分布中抽取的N個樣本IID組成的。成功率可以表示為一個二項式變量,其平均概率p由樣本平均值估計:p?s/N

其標準差為:σ=√p(1-p)。

其中當(dāng)p=0.5時,其上限為0.5。

在正態(tài)近似下,估計量的標準差為:δ=σ/√N。

這個精度估計上的誤差δ是這樣的,在最壞的情況下,有約50%的精度:

換句話說,為了保證上述報告中例子52.34%的準確率,你的測試集的大小至少應(yīng)該在30M樣本的數(shù)量級上!這種粗略的分析很容易轉(zhuǎn)化為除了準確率以外的任何可計算的數(shù)量,盡管不能轉(zhuǎn)化為像似然率或困惑度這樣的連續(xù)數(shù)字。

下面是一些常見的機器學(xué)習(xí)數(shù)據(jù)集的說明。

在ImageNet上可以合理地報告多少位數(shù)的精度?準確率在80%左右,測試集是15萬張圖片:

√(0.8*0.2/150000)=0.103%

這意味著你幾乎可以報告XX.X%的數(shù)字,而實際上每個人都是這樣做的。

MNIST呢,準確率在99%:

√(0.99*0.01/10000)=0.099%

噗,也報個XX.X%就OK了!

然而,最值得注意的是,在大多數(shù)情況下,性能數(shù)據(jù)并不是單獨呈現(xiàn)的,而是用來比較同一測試集上的多種方法。在這種情況下,實驗之間的抽樣方差會被抵消,即使在樣本量較小的情況下,它們之間的準確度差異也可能在統(tǒng)計學(xué)上很顯著。估計圖方差的一個簡單方法是執(zhí)行bootstrap重采樣。更嚴格、通常更嚴格的檢驗包括進行配對差異檢驗或更普遍的方差分析。

報告超出其內(nèi)在精度的數(shù)字可能很具有極大的吸引力,因為在與基線進行比較的情況下,或者當(dāng)人們認為測試集是一成不變的情況下,同時也不是從測試分布中抽取的樣本時,性能數(shù)字往往更加重要。當(dāng)在生產(chǎn)中部署模型時,這種做法會讓人感到驚訝,并且固定的測試集假設(shè)突然消失了,還有一些無關(guān)緊要的改進。更普遍的是,這種做法會直接導(dǎo)致對測試集進行過擬合。

那么,在我們的領(lǐng)域中數(shù)字為“真”意味著什么?好吧,這確實很復(fù)雜。對于工程師而言,很容易辯稱不應(yīng)該報告的尺寸超出公差。或者對于物理學(xué)家來說,物理量不應(yīng)超過測量誤差。對于機器學(xué)習(xí)從業(yè)者,我們不僅要應(yīng)對測試集的采樣不確定性,而且還要應(yīng)對獨立訓(xùn)練運行,訓(xùn)練數(shù)據(jù)的不同初始化和改組下的模型不確定性。

按照這個標準,在機器學(xué)習(xí)中很難確定哪些數(shù)字是“真”的。解決辦法當(dāng)然是盡可能地報告其置信區(qū)間。置信區(qū)間是一種更精細的報告不確定性的方式,可以考慮到所有隨機性的來源,以及除簡單方差之外的顯著性檢驗。它們的存在也向你的讀者發(fā)出信號,表明你已經(jīng)考慮過你所報告的內(nèi)容的意義,而不僅僅是你的代碼所得到的數(shù)字。用置信區(qū)間表示的數(shù)字可能會被報告得超出其名義上的精度,不過要注意的是,你現(xiàn)在必須考慮用多少位數(shù)來報告不確定性,正如這篇博文所解釋的那樣。一路走來都是烏龜。

數(shù)字少了,雜亂無章的東西就少了,科學(xué)性就強了。

避免報告超出統(tǒng)計學(xué)意義的數(shù)字結(jié)果,除非你為它們提供一個明確的置信區(qū)間。這理所當(dāng)然地被認為是科學(xué)上的不良行為,尤其是在沒有進行配對顯著性測試的情況下,用來論證一個數(shù)字比另一個數(shù)字好的時候。僅憑這一點就經(jīng)常有論文被拒絕。一個良好的習(xí)慣是對報告中帶有大量數(shù)字的準確率數(shù)字始終持懷疑態(tài)度。還記得3000萬、30萬和30萬的經(jīng)驗法則對最壞情況下作為“嗅覺測試”的統(tǒng)計顯著性所需樣本數(shù)量的限制嗎?它會讓你避免追逐統(tǒng)計上的“幽靈”。
責(zé)任編輯:YYX

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    FPGA在機器學(xué)習(xí)的具體應(yīng)用

    ,越來越多地被應(yīng)用于機器學(xué)習(xí)任務(wù)。本文將探討 FPGA 在機器學(xué)習(xí)的應(yīng)用,特別是在加速神經(jīng)網(wǎng)
    的頭像 發(fā)表于 07-16 15:34 ?2372次閱讀

    LD Gen2 Lite激光雷達:賦予機器人 “感知力” 的關(guān)鍵

    機器人的感知世界里,激光雷達宛如一雙敏銳的“慧眼”,賦予機器人“看”清周圍環(huán)境、自主決策的能力。亮道智能最新推出的純固態(tài)Flash短距激光雷達LD Gen2 Lite,憑借其獨特的技術(shù)優(yōu)勢,在
    的頭像 發(fā)表于 04-25 10:42 ?410次閱讀

    嵌入式AI技術(shù)之深度學(xué)習(xí):數(shù)據(jù)樣本預(yù)處理過程中使用合適的特征變換對深度學(xué)習(xí)意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實現(xiàn)機器學(xué)習(xí),網(wǎng)絡(luò)的每個層都將對輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成深度學(xué)習(xí)的框架,可以深度理解數(shù)據(jù)中所要表示的規(guī)律。從原理上看,使用深度學(xué)習(xí)
    的頭像 發(fā)表于 04-02 18:21 ?1188次閱讀

    工業(yè)機器人工作站的建設(shè)意義

    生產(chǎn)流程,減少生產(chǎn)環(huán)節(jié)的浪費和延誤,進一步提升生產(chǎn)效率。上海桐爾提供的解決方案能夠幫助企業(yè)實現(xiàn)高效、穩(wěn)定的生產(chǎn)模式,提升市場競爭力。 其次,工業(yè)機器人工作站的建設(shè)有助于改善作業(yè)環(huán)境,降低操作難度。通過
    發(fā)表于 03-17 14:49

    數(shù)學(xué)專業(yè)轉(zhuǎn)人工智能方向:考研/就業(yè)前景分析及大學(xué)四年學(xué)習(xí)路徑全揭秘

    隨著AI技術(shù)的不斷進步,專業(yè)人才的需求也日益增長。數(shù)學(xué)作為AI的基石,為機器學(xué)習(xí)、深度學(xué)習(xí)、數(shù)據(jù)分析等提供理論基礎(chǔ)和工具,因此越來越多的
    的頭像 發(fā)表于 02-07 11:14 ?1538次閱讀
    <b class='flag-5'>數(shù)學(xué)</b>專業(yè)轉(zhuǎn)人工智能方向:考研/就業(yè)前景分析及大學(xué)四年<b class='flag-5'>學(xué)習(xí)</b>路徑全揭秘

    傳統(tǒng)機器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章,我們介紹機器學(xué)習(xí)的關(guān)鍵概念術(shù)語。在本文中,我們會介紹傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多
    的頭像 發(fā)表于 12-30 09:16 ?1663次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    如何選擇云原生機器學(xué)習(xí)平臺

    當(dāng)今,云原生機器學(xué)習(xí)平臺因其彈性擴展、高效部署、低成本運營等優(yōu)勢,逐漸成為企業(yè)構(gòu)建和部署機器學(xué)習(xí)應(yīng)用的首選。然而,市場上的云原生機器
    的頭像 發(fā)表于 12-25 11:54 ?637次閱讀

    zeta在機器學(xué)習(xí)的應(yīng)用 zeta的優(yōu)缺點分析

    在探討ZETA在機器學(xué)習(xí)的應(yīng)用以及ZETA的優(yōu)缺點時,需要明確的是,ZETA一詞在不同領(lǐng)域可能有不同的含義和應(yīng)用。以下是根據(jù)不同領(lǐng)域的ZETA進行的分析: 一、ZETA在機器
    的頭像 發(fā)表于 12-20 09:11 ?1505次閱讀

    cmp在機器學(xué)習(xí)的作用 如何使用cmp進行數(shù)據(jù)對比

    機器學(xué)習(xí)領(lǐng)域,"cmp"這個術(shù)語可能并不是一個常見的術(shù)語,它可能是指"比較"(comparison)的縮寫。 比較在機器學(xué)習(xí)的作用 模型
    的頭像 發(fā)表于 12-17 09:35 ?1223次閱讀

    傅立葉變換在機器學(xué)習(xí)的應(yīng)用 常見傅立葉變換的誤區(qū)解析

    傅里葉變換在機器學(xué)習(xí)的應(yīng)用 傅里葉變換是一種將信號分解為其組成頻率分量的數(shù)學(xué)運算,它在機器學(xué)習(xí)
    的頭像 發(fā)表于 12-06 17:06 ?1370次閱讀

    什么是機器學(xué)習(xí)?通過機器學(xué)習(xí)方法能解決哪些問題?

    計算機系統(tǒng)自身的性能”。事實上,由于“經(jīng)驗”在計算機系統(tǒng)主要以數(shù)據(jù)的形式存在,因此機器學(xué)習(xí)需要設(shè)法對數(shù)據(jù)進行分析學(xué)習(xí),這就使得它逐漸成為智能數(shù)據(jù)分析技術(shù)的創(chuàng)新源之一,
    的頭像 發(fā)表于 11-16 01:07 ?1389次閱讀
    什么是<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>?通過<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問題?

    NPU與機器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機器學(xué)習(xí)算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學(xué)習(xí)機器
    的頭像 發(fā)表于 11-15 09:19 ?1716次閱讀

    eda在機器學(xué)習(xí)的應(yīng)用

    機器學(xué)習(xí)項目中,數(shù)據(jù)預(yù)處理和理解是成功構(gòu)建模型的關(guān)鍵。探索性數(shù)據(jù)分析(EDA)是這一過程不可或缺的一部分。 1. 數(shù)據(jù)清洗 數(shù)據(jù)清洗 是機器學(xué)習(xí)
    的頭像 發(fā)表于 11-13 10:42 ?1215次閱讀

    魯棒性在機器學(xué)習(xí)的重要性

    金融風(fēng)險評估。這些應(yīng)用場景對模型的魯棒性提出了極高的要求。 魯棒性的定義 魯棒性通常被定義為系統(tǒng)在面對不確定性和變化時仍能保持其功能的能力。在機器學(xué)習(xí),這意味著即使輸入數(shù)據(jù)包含錯誤、噪聲或被故意篡改,模型
    的頭像 發(fā)表于 11-11 10:19 ?1776次閱讀

    具身智能與機器學(xué)習(xí)的關(guān)系

    (如機器人、虛擬代理等)通過與物理世界或虛擬環(huán)境的交互來獲得、發(fā)展和應(yīng)用智能的能力。這種智能不僅包括認知和推理能力,還包括感知、運動控制和環(huán)境適應(yīng)能力。具身智能強調(diào)智能體的身體和環(huán)境在智能發(fā)展的重要性。 2. 機器
    的頭像 發(fā)表于 10-27 10:33 ?1438次閱讀