chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

為什么深度學(xué)習(xí)還沒有取代傳統(tǒng)計(jì)算機(jī)視覺技術(shù)?

新機(jī)器視覺 ? 來(lái)源:云棲社區(qū) ? 作者:云棲社區(qū) ? 2020-10-23 11:24 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文作者認(rèn)為,深度學(xué)習(xí)只是一種計(jì)算機(jī)視覺工具,而不是包治百病的良藥,不要因?yàn)榱餍芯鸵晃兜厥褂盟?。傳統(tǒng)的計(jì)算機(jī)視覺技術(shù)仍然可以大顯身手,了解它們可以為你省去很多的時(shí)間和煩惱;并且掌握傳統(tǒng)計(jì)算機(jī)視覺確實(shí)可以讓你在深度學(xué)習(xí)方面做得更好。這是因?yàn)槟憧梢愿玫乩斫馍疃葘W(xué)習(xí)的內(nèi)部狀況,并可執(zhí)行預(yù)處理步驟改善深度學(xué)習(xí)結(jié)果。

本文的靈感同樣來(lái)自論壇中的一個(gè)常見問(wèn)題:

深度學(xué)習(xí)已經(jīng)取代了傳統(tǒng)的計(jì)算機(jī)視覺嗎?

或是換種說(shuō)法:

既然深度學(xué)習(xí)看起來(lái)如此有效,是否還有必要學(xué)習(xí)傳統(tǒng)的計(jì)算機(jī)視覺技術(shù)?

這個(gè)問(wèn)題很好。深度學(xué)習(xí)確實(shí)給計(jì)算機(jī)視覺和人工智能領(lǐng)域帶來(lái)了革命性的突破。許多曾經(jīng)看似困難的問(wèn)題,現(xiàn)在機(jī)器可以比解決的比人類還好。圖像分類就是最好的印證。確實(shí),如從前所述,深度學(xué)習(xí)有責(zé)任將計(jì)算機(jī)視覺納入行業(yè)版圖。

但深度學(xué)習(xí)仍然只是計(jì)算機(jī)視覺的一個(gè)工具,且顯然不是解決所有問(wèn)題的靈丹妙藥。因此,本文會(huì)對(duì)此進(jìn)行詳細(xì)闡述。也就是說(shuō),我將說(shuō)明傳統(tǒng)的計(jì)算機(jī)視覺技術(shù)為何仍十分有用,值得我們繼續(xù)學(xué)習(xí)并傳授下去。

本文分為以下幾個(gè)部分/論點(diǎn):

深度學(xué)習(xí)需要大數(shù)據(jù)

深度學(xué)習(xí)有時(shí)會(huì)做過(guò)了頭

傳統(tǒng)計(jì)算機(jī)視覺將會(huì)提升你的深度學(xué)習(xí)水平

進(jìn)入正文之前,我認(rèn)為有必要詳細(xì)解釋一下什么是「?jìng)鹘y(tǒng)計(jì)算機(jī)視覺」,什么是深度學(xué)習(xí),及其革命性。

背景知識(shí)

在深度學(xué)習(xí)出現(xiàn)以前,如果你有一項(xiàng)諸如圖像分類的工作,你會(huì)進(jìn)行一步叫做「特征提取」的處理。所謂「特征」就是圖像中「有趣的」、描述性的、或是提供信息的小部分。你會(huì)應(yīng)用我在本文中稱之為的「?jìng)鹘y(tǒng)計(jì)算機(jī)視覺技術(shù)」的組合來(lái)尋找這些特征,包括邊緣檢測(cè)、角點(diǎn)檢測(cè)、對(duì)象檢測(cè)等等。

在使用這些與特征提取和圖像分類相關(guān)的技術(shù)時(shí),會(huì)從一類對(duì)象(例如:椅子、馬等等)的圖像中提取出盡可能多的特征,并將其視為這類對(duì)象的「定義」(稱作「詞袋」)。接下來(lái)你要在其它圖像中搜索這些「定義」。如果在另一個(gè)圖像中存在著詞袋中相當(dāng)一部分的特征,那么這個(gè)圖像就被歸為包含那個(gè)特定對(duì)象(如椅子、馬等等)的分類。

這種圖像分類的特征提取方法的難點(diǎn)在于你必須在每張圖像中選擇尋找哪些特征。隨著你試圖區(qū)分的類別數(shù)目開始增長(zhǎng),比如說(shuō)超過(guò) 10 或 20,這就會(huì)變得非常麻煩甚至難以實(shí)現(xiàn)。你要尋找角點(diǎn)?邊緣?還是紋理信息?不同類別的對(duì)象最好要用不同種類型的特征來(lái)描述。如果你選擇使用很多的特征,你就不得不處理海量的參數(shù),而且還需要自己來(lái)微調(diào)。

深度學(xué)習(xí)引入了「端到端學(xué)習(xí)」這一概念,(簡(jiǎn)而言之)讓機(jī)器在每個(gè)特定類別的對(duì)象中學(xué)習(xí)尋找特征,即最具描述性、最突出的特征。換句話說(shuō),讓神經(jīng)網(wǎng)絡(luò)去發(fā)現(xiàn)各種類型圖像中的潛在模式。

因此,借助端到端學(xué)習(xí),你不再需要手動(dòng)決定采用哪種傳統(tǒng)機(jī)器視覺技術(shù)來(lái)描述特征。機(jī)器為你做好了這一切。《連線》雜志如此寫道:

舉例來(lái)說(shuō),如果你想教會(huì)一個(gè) [深度] 神經(jīng)網(wǎng)絡(luò)識(shí)別一只貓,你不必告訴它去尋找胡須、耳朵、毛或是眼睛。你只需展示給它成千上萬(wàn)的貓的圖像,它自然會(huì)解決這一問(wèn)題。如果它總是會(huì)將狐貍誤認(rèn)為是貓,你也不用重寫代碼。你只需對(duì)它繼續(xù)進(jìn)行訓(xùn)練。

下圖描述了特征提?。ㄊ褂脗鹘y(tǒng)計(jì)算機(jī)視覺)和端到端學(xué)習(xí)之間的這種區(qū)別:

以上就是背景介紹?,F(xiàn)在接著討論為什么傳統(tǒng)計(jì)算機(jī)視覺仍然必不可少,而且學(xué)習(xí)它仍大有裨益。

深度學(xué)習(xí)需要大量數(shù)據(jù)

首先,深度學(xué)習(xí)需要數(shù)據(jù),許許多多的數(shù)據(jù)。前文提到過(guò)的著名圖像分類模型的訓(xùn)練都基于龐大的數(shù)據(jù)集。排名前三的訓(xùn)練數(shù)據(jù)集分別是:

ImageNet——150 萬(wàn)圖像,1000 個(gè)對(duì)象分類/類別;

COCO——250 萬(wàn)圖像,91 個(gè)對(duì)象分類;

PASCAL VOC——50 萬(wàn)圖像,20 個(gè)對(duì)象分類。

但是一個(gè)訓(xùn)練不良的模型在你的訓(xùn)練數(shù)據(jù)之外很可能表現(xiàn)糟糕,因?yàn)闄C(jī)器并沒有對(duì)于問(wèn)題的洞察力,也就不能在沒看到數(shù)據(jù)的情況下進(jìn)行概括歸納。而且對(duì)你來(lái)說(shuō)查看訓(xùn)練模型內(nèi)部并進(jìn)行手動(dòng)調(diào)整又太過(guò)困難,因?yàn)橐粋€(gè)深度學(xué)習(xí)模型內(nèi)部擁有數(shù)以百萬(wàn)計(jì)的參數(shù)——每個(gè)參數(shù)在訓(xùn)練期間都會(huì)被調(diào)整。某種程度上說(shuō),一個(gè)深度學(xué)習(xí)模型就是一個(gè)黑箱。

傳統(tǒng)的計(jì)算機(jī)視覺完全透明,允許你更好地評(píng)估判斷你的解決方案是否在訓(xùn)練環(huán)境之外依然有效。你對(duì)問(wèn)題的深入見解可以放進(jìn)你的算法之中。并且如果任何地方出現(xiàn)故障,你也可以更輕易地弄清楚什么需要調(diào)整,在哪里調(diào)整。

深度學(xué)習(xí)有時(shí)做過(guò)了頭

這大概是我最喜歡的支持研究傳統(tǒng)計(jì)算機(jī)視覺技術(shù)的理由。

訓(xùn)練一個(gè)深度神經(jīng)網(wǎng)絡(luò)需要很長(zhǎng)的時(shí)間。你需要專門的硬件(例如高性能 GPU)訓(xùn)練最新、最先進(jìn)的圖像分類模型。你想在自己還不錯(cuò)的筆記本上訓(xùn)練?去度個(gè)一周的假吧,等你回來(lái)的時(shí)候訓(xùn)練很可能仍未完成。

此外,如果你的訓(xùn)練模型表現(xiàn)不佳呢?你不得不返回原點(diǎn),用不同的訓(xùn)練參數(shù)重做全部工作。這一過(guò)程可能會(huì)重復(fù)數(shù)百次。

但有時(shí)候所有這些完全沒必要。因?yàn)閭鹘y(tǒng)計(jì)算機(jī)視覺技術(shù)可以比深度學(xué)習(xí)更有效率地解決問(wèn)題,而且使用的代碼更少。例如,我曾經(jīng)參與的一個(gè)項(xiàng)目是檢查每個(gè)通過(guò)傳送帶的罐子里是否有一個(gè)紅勺子?,F(xiàn)在你可以通過(guò)前文敘述的曠日持久的過(guò)程來(lái)訓(xùn)練一個(gè)深度神經(jīng)網(wǎng)絡(luò)去檢測(cè)勺子,或者你也可以寫一個(gè)簡(jiǎn)單的以紅色為閾值的算法(將任何帶有一定范圍紅色的像素都標(biāo)記為白色,所有其它的像素標(biāo)記為黑色),然后計(jì)算有多少白色的像素。簡(jiǎn)簡(jiǎn)單單,一個(gè)小時(shí)就可以搞定!

掌握傳統(tǒng)的計(jì)算機(jī)視覺技術(shù)可能會(huì)為你節(jié)省大量的時(shí)間并減少不必要的煩惱。

傳統(tǒng)計(jì)算機(jī)視覺會(huì)提升你的深度學(xué)習(xí)技巧

理解傳統(tǒng)的計(jì)算機(jī)視覺實(shí)際上能幫你在深度學(xué)習(xí)上做得更好。

舉例來(lái)說(shuō),計(jì)算機(jī)視覺領(lǐng)域最為普遍使用的神經(jīng)網(wǎng)絡(luò)是卷積神經(jīng)網(wǎng)絡(luò)。但什么是卷積?卷積事實(shí)上是一種被廣泛使用的圖像處理技術(shù)(比如,索貝爾邊緣檢測(cè))。了解這一點(diǎn)可以幫助你理解神經(jīng)網(wǎng)絡(luò)內(nèi)部究竟發(fā)生了什么,從而進(jìn)行設(shè)計(jì)和微調(diào)以更好地解決你的問(wèn)題。

還有一件事叫做預(yù)處理。你輸入給模型的數(shù)據(jù)往往要經(jīng)過(guò)這種處理,以便為接下來(lái)的訓(xùn)練做準(zhǔn)備。這些預(yù)處理步驟主要是通過(guò)傳統(tǒng)的計(jì)算機(jī)視覺技術(shù)完成的。例如,如果你沒有足夠的訓(xùn)練數(shù)據(jù),你可以進(jìn)行一個(gè)叫做數(shù)據(jù)增強(qiáng)的處理。數(shù)據(jù)增強(qiáng)是指對(duì)你訓(xùn)練數(shù)據(jù)集中的圖像進(jìn)行隨機(jī)的旋轉(zhuǎn)、移動(dòng)、裁剪等,從而創(chuàng)造出「新」圖像。通過(guò)執(zhí)行這些計(jì)算機(jī)視覺操作,可以極大地增加你的訓(xùn)練數(shù)據(jù)量。

結(jié)論

本文闡述了為什么深度學(xué)習(xí)還沒有取代傳統(tǒng)計(jì)算機(jī)視覺技術(shù),以及后者仍值得學(xué)習(xí)和傳授。首先,本文將目光放在了深度學(xué)習(xí)往往需要大量數(shù)據(jù)才能表現(xiàn)良好這一問(wèn)題上。有時(shí)并不具備大量數(shù)據(jù),而傳統(tǒng)計(jì)算機(jī)視覺在這種情況下可作為一種替代方案。第二,深度學(xué)習(xí)針對(duì)特定的任務(wù)偶爾會(huì)做過(guò)頭。在這些任務(wù)中,標(biāo)準(zhǔn)的計(jì)算機(jī)視覺比起深度學(xué)習(xí)可以更為高效地解決問(wèn)題,并且使用更少的代碼。第三,掌握傳統(tǒng)計(jì)算機(jī)視覺確實(shí)可以讓你在深度學(xué)習(xí)方面做得更好。這是因?yàn)槟憧梢愿玫乩斫馍疃葘W(xué)習(xí)的內(nèi)部狀況,并可執(zhí)行預(yù)處理步驟改善深度學(xué)習(xí)結(jié)果。

總而言之,深度學(xué)習(xí)只是一種計(jì)算機(jī)視覺的工具,而不是包治百病的良藥。不要因?yàn)榱餍芯鸵晃兜厥褂盟?br /> 責(zé)任編輯人:CC

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:觀點(diǎn) | 為什么深度學(xué)習(xí)仍未取代傳統(tǒng)的計(jì)算機(jī)視覺技術(shù)?

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何在機(jī)器視覺中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    人士而言往往難以理解,人們也常常誤以為需要扎實(shí)的編程技能才能真正掌握并合理使用這項(xiàng)技術(shù)。事實(shí)上,這種印象忽視了該技術(shù)為機(jī)器視覺(乃至生產(chǎn)自動(dòng)化)帶來(lái)的潛力,因?yàn)?b class='flag-5'>深度
    的頭像 發(fā)表于 09-10 17:38 ?507次閱讀
    如何在機(jī)器<b class='flag-5'>視覺</b>中部署<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>神經(jīng)網(wǎng)絡(luò)

    自動(dòng)駕駛中Transformer大模型會(huì)取代深度學(xué)習(xí)嗎?

    [首發(fā)于智駕最前沿微信公眾號(hào)]近年來(lái),隨著ChatGPT、Claude、文心一言等大語(yǔ)言模型在生成文本、對(duì)話交互等領(lǐng)域的驚艷表現(xiàn),“Transformer架構(gòu)是否正在取代傳統(tǒng)深度學(xué)習(xí)
    的頭像 發(fā)表于 08-13 09:15 ?3773次閱讀
    自動(dòng)駕駛中Transformer大模型會(huì)<b class='flag-5'>取代</b><b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>嗎?

    易控智駕榮獲計(jì)算機(jī)視覺頂會(huì)CVPR 2025認(rèn)可

    近日,2025年國(guó)際計(jì)算機(jī)視覺與模式識(shí)別頂級(jí)會(huì)議(IEEE/CVF Conference on Computer Vision and Pattern Recognition,CVPR 2025)在美國(guó)田納西州納什維爾召開。
    的頭像 發(fā)表于 07-29 16:54 ?843次閱讀

    工業(yè)計(jì)算機(jī)與商用計(jì)算機(jī)的區(qū)別有哪些

    工業(yè)計(jì)算機(jī)是一種專為工廠和工業(yè)環(huán)境設(shè)計(jì)的計(jì)算系統(tǒng),具有高可靠性和穩(wěn)定性,能夠應(yīng)對(duì)惡劣環(huán)境下的自動(dòng)化、制造和機(jī)器人操作。其特點(diǎn)包括無(wú)風(fēng)扇散熱技術(shù)、無(wú)電纜連接和防塵防水設(shè)計(jì),使其在各種工業(yè)自動(dòng)化場(chǎng)景中
    的頭像 發(fā)表于 07-10 16:36 ?388次閱讀
    工業(yè)<b class='flag-5'>計(jì)算機(jī)</b>與商用<b class='flag-5'>計(jì)算機(jī)</b>的區(qū)別有哪些

    一文帶你了解工業(yè)計(jì)算機(jī)尺寸

    一項(xiàng)艱巨的任務(wù)。本博客將指導(dǎo)您了解關(guān)鍵的工業(yè)計(jì)算機(jī)尺寸、使用案例。關(guān)鍵工業(yè)計(jì)算機(jī)外形要素及其使用案例一、工業(yè)微型PC尺寸范圍:寬度:100毫米-180毫米深度:10
    的頭像 發(fā)表于 04-24 13:35 ?607次閱讀
    一文帶你了解工業(yè)<b class='flag-5'>計(jì)算機(jī)</b>尺寸

    Arm KleidiCV與OpenCV集成助力移動(dòng)端計(jì)算機(jī)視覺性能優(yōu)化

    生成式及多模態(tài)人工智能 (AI) 工作負(fù)載的廣泛增長(zhǎng),推動(dòng)了對(duì)計(jì)算機(jī)視覺 (CV) 技術(shù)日益高漲的需求。此類技術(shù)能夠解釋并分析源自現(xiàn)實(shí)世界的視覺
    的頭像 發(fā)表于 02-24 10:15 ?764次閱讀

    AR和VR中的計(jì)算機(jī)視覺

    ):計(jì)算機(jī)視覺引領(lǐng)混合現(xiàn)實(shí)體驗(yàn)增強(qiáng)現(xiàn)實(shí)(AR)和虛擬現(xiàn)實(shí)(VR)正在徹底改變我們與外部世界的互動(dòng)方式。即便是在引人入勝的沉浸式
    的頭像 發(fā)表于 02-08 14:29 ?1868次閱讀
    AR和VR中的<b class='flag-5'>計(jì)算機(jī)</b><b class='flag-5'>視覺</b>

    云端超級(jí)計(jì)算機(jī)使用教程

    云端超級(jí)計(jì)算機(jī)是一種基于云計(jì)算的高性能計(jì)算服務(wù),它將大量計(jì)算資源和存儲(chǔ)資源集中在一起,通過(guò)網(wǎng)絡(luò)向用戶提供按需的計(jì)算服務(wù)。下面,AI部落小編為
    的頭像 發(fā)表于 12-17 10:19 ?744次閱讀

    工業(yè)中使用哪種計(jì)算機(jī)

    在工業(yè)環(huán)境中,工控機(jī)被廣泛使用。這些計(jì)算機(jī)的設(shè)計(jì)可承受極端溫度、灰塵和振動(dòng)等惡劣條件。它們比標(biāo)準(zhǔn)消費(fèi)類計(jì)算機(jī)更耐用、更可靠。工業(yè)計(jì)算機(jī)可控制機(jī)器、監(jiān)控流程并實(shí)時(shí)收集數(shù)據(jù)。其堅(jiān)固的結(jié)構(gòu)和專業(yè)功能
    的頭像 發(fā)表于 11-29 14:07 ?918次閱讀
    工業(yè)中使用哪種<b class='flag-5'>計(jì)算機(jī)</b>?

    量子計(jì)算機(jī)與普通計(jì)算機(jī)工作原理的區(qū)別

    ? 本文介紹了量子計(jì)算機(jī)與普通計(jì)算機(jī)工作原理的區(qū)別。 量子計(jì)算是一個(gè)新興的研究領(lǐng)域,科學(xué)家們利用量子力學(xué),制造出具有革命性能力的計(jì)算機(jī)。雖然現(xiàn)在的量子
    的頭像 發(fā)表于 11-24 11:00 ?2165次閱讀
    量子<b class='flag-5'>計(jì)算機(jī)</b>與普通<b class='flag-5'>計(jì)算機(jī)</b>工作原理的區(qū)別

    pcie在深度學(xué)習(xí)中的應(yīng)用

    深度學(xué)習(xí)模型通常需要大量的數(shù)據(jù)和強(qiáng)大的計(jì)算能力來(lái)訓(xùn)練。傳統(tǒng)的CPU計(jì)算資源有限,難以滿足深度
    的頭像 發(fā)表于 11-13 10:39 ?1670次閱讀

    工業(yè)計(jì)算機(jī)類型介紹

    工業(yè)領(lǐng)域沒有計(jì)算機(jī)的世界就像沒有管弦樂隊(duì)的交響樂,缺乏實(shí)現(xiàn)最佳性能所需的和諧和精確度。計(jì)算機(jī)徹底改變了工業(yè)的運(yùn)作方式,將效率、準(zhǔn)確性和創(chuàng)新推向了新的高度。事實(shí)上,根據(jù)最近在印度進(jìn)行的一
    的頭像 發(fā)表于 11-04 15:56 ?853次閱讀
    工業(yè)<b class='flag-5'>計(jì)算機(jī)</b>類型介紹

    【小白入門必看】一文讀懂深度學(xué)習(xí)計(jì)算機(jī)視覺技術(shù)學(xué)習(xí)路線

    一、什么是計(jì)算機(jī)視覺?計(jì)算機(jī)視覺,其實(shí)就是教機(jī)器怎么像我們?nèi)艘粯?,用攝像頭看看周圍的世界,然后理解它。比如說(shuō),它能認(rèn)出這是個(gè)蘋果,或者那邊有輛車。除此之外,還能把拍到的照片或者視頻轉(zhuǎn)換
    的頭像 發(fā)表于 10-31 17:00 ?1595次閱讀
    【小白入門必看】一文讀懂<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>計(jì)算機(jī)</b><b class='flag-5'>視覺</b><b class='flag-5'>技術(shù)</b>及<b class='flag-5'>學(xué)習(xí)</b>路線

    AI干貨補(bǔ)給站 | 深度學(xué)習(xí)與機(jī)器視覺的融合探索

    ,幫助從業(yè)者積累行業(yè)知識(shí),推動(dòng)工業(yè)視覺應(yīng)用的快速落地。本期亮點(diǎn)預(yù)告本期將以“深度學(xué)習(xí)與機(jī)器視覺的融合探索”為主題,通過(guò)講解深度
    的頭像 發(fā)表于 10-29 08:04 ?714次閱讀
    AI干貨補(bǔ)給站 | <b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>與機(jī)器<b class='flag-5'>視覺</b>的融合探索

    計(jì)算傳統(tǒng)計(jì)算的區(qū)別

    計(jì)算傳統(tǒng)計(jì)算是兩種不同的計(jì)算模式,它們?cè)谫Y源獲取、管理方式、性能、成本、可靠性和靈活性等多個(gè)方面存在顯著差異。以下是對(duì)這兩種計(jì)算模式的比較: 一、資源獲取與管理 云
    的頭像 發(fā)表于 10-24 09:13 ?2834次閱讀