chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

目標(biāo)檢測和圖像分割之間的區(qū)別

新機器視覺 ? 來源:AI研習(xí)社 ? 作者:AI研習(xí)社 ? 2020-11-03 10:03 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

計算機視覺

圖像檢測和圖像分割有什么區(qū)別?

人工智能對于圖像處理有不同的任務(wù)。在本文中,我將介紹目標(biāo)檢測和圖像分割之間的區(qū)別。

在這兩個任務(wù)中,我們都希望找到圖像中某些感興趣的項目的位置。例如,我們可以有一組安全攝像頭照片,在每張照片上,我們想要識別照片中所有人的位置。

通常有兩種方法可以用于此:目標(biāo)檢測(Object Detection)和圖像分割(Image Segmentation)。

目標(biāo)檢測-預(yù)測包圍盒

當(dāng)我們說到物體檢測時,我們通常會說到邊界盒。這意味著我們的圖像處理將在我們的圖片中識別每個人周圍的矩形。

邊框通常由左上角的位置(2 個坐標(biāo))和寬度和高度(以像素為單位)定義。

來自開放圖像數(shù)據(jù)集的注釋圖像。家庭堆雪人,來自 mwvchamber。在CC BY 2.0許可下使用的圖像。

如何理解目標(biāo)檢測
如果我們回到任務(wù):識別圖片上的所有人,則可以理解通過邊界框進(jìn)行對象檢測的邏輯。
我們首先想到的解決方案是將圖像切成小塊,然后在每個子圖像上應(yīng)用圖像分類,以區(qū)別該圖像是否是人類。對單個圖像進(jìn)行分類是一項較容易的任務(wù),并且是對象檢測的一項,因此,他們采用了這種分步方法。
當(dāng)前,YOLO模型(You Only Look Once)是解決此問題的偉大發(fā)明。YOLO模型的開發(fā)人員已經(jīng)構(gòu)建了一個神經(jīng)網(wǎng)絡(luò),該神經(jīng)網(wǎng)絡(luò)能夠立即執(zhí)行整個邊界框方法!
當(dāng)前用于目標(biāo)檢測的最佳模型
YOLO
Faster RCNN

目標(biāo)分割-預(yù)測掩模

一步一步地掃描圖像的邏輯替代方法是遠(yuǎn)離畫框,而是逐像素地注釋圖像。

如果你這樣做,你將會有一個更詳細(xì)的模型,它基本上是輸入圖像的一個轉(zhuǎn)換。

來自開放圖像數(shù)據(jù)集的注釋圖像。家庭堆雪人,來自 mwvchamber。在CC BY 2.0許可下使用的圖像。

如何理解圖像分割
這個想法很基本:即使在掃描產(chǎn)品上的條形碼時,也可以應(yīng)用一種算法來轉(zhuǎn)換輸入信息(通過應(yīng)用各種過濾器),這樣,除了條形碼序列以外的所有信息在最終圖像中都不可見。


這是在圖像上定位條形碼的基本方法,但與在圖像分割中所發(fā)生的情況類似。
圖像分割的返回格式稱為掩碼:與原始圖像大小相同的圖像,但是對于每個像素,它只有一個布爾值來指示對象是否存在。
如果我們允許多個類別,它就會變得更加復(fù)雜:例如,它可以將一個海灘景觀分為三類:空氣、海洋和沙子。
當(dāng)下圖像分割的最佳模型
Mask RCNN
Unet
Segnet

比較總結(jié)

對象檢測
輸入是一個矩陣(輸入圖像),每個像素有 3 個值(紅、綠、藍(lán)),如果是黑色和白色,則每個像素有 1 個值
輸出是由左上角和大小定義的邊框列表
圖像分割
輸入是一個矩陣(輸入圖像),每個像素有 3 個值(紅、綠、藍(lán)),如果是黑色和白色,則每個像素有 1 個值
輸出是一個矩陣(掩模圖像),每個像素有一個包含指定類別的值

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 圖像處理
    +關(guān)注

    關(guān)注

    27

    文章

    1337

    瀏覽量

    58905
  • 圖像分割
    +關(guān)注

    關(guān)注

    4

    文章

    182

    瀏覽量

    18572
  • 圖像檢測
    +關(guān)注

    關(guān)注

    0

    文章

    35

    瀏覽量

    12116

原文標(biāo)題:計算機視覺:圖像檢測和圖像分割有什么區(qū)別?

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    工業(yè)質(zhì)檢再升級:復(fù)雜網(wǎng)絡(luò)檢測模型破解多場景檢測難題

    在工業(yè)視覺檢測領(lǐng)域,缺陷類型多樣、目標(biāo)尺度差異大、圖像質(zhì)量參差不齊等問題,一直是企業(yè)提升質(zhì)檢效率的攔路虎。阿丘科技最新發(fā)布《檢測工具復(fù)雜網(wǎng)絡(luò)功能白皮書》,帶來了一款針對復(fù)雜場景的
    的頭像 發(fā)表于 07-16 15:52 ?469次閱讀
    工業(yè)質(zhì)檢再升級:復(fù)雜網(wǎng)絡(luò)<b class='flag-5'>檢測</b>模型破解多場景<b class='flag-5'>檢測</b>難題

    迅為RK3576開發(fā)板攝像頭實時推理測試-ppseg?圖像分割

    迅為RK3576開發(fā)板攝像頭實時推理測試-ppseg 圖像分割
    的頭像 發(fā)表于 07-11 14:31 ?604次閱讀
    迅為RK3576開發(fā)板攝像頭實時推理測試-ppseg?<b class='flag-5'>圖像</b><b class='flag-5'>分割</b>

    圖像采集卡與視頻采集卡的主要區(qū)別對比

    圖像采集卡和視頻采集卡的核心區(qū)別在于它們的設(shè)計目標(biāo)、處理對象和典型應(yīng)用場景。盡管名稱相似,且有時功能會有重疊(尤其是高端設(shè)備),但它們側(cè)重點不同:以下是主要區(qū)別:1.處理對象與
    的頭像 發(fā)表于 06-27 14:42 ?493次閱讀
    <b class='flag-5'>圖像</b>采集卡與視頻采集卡的主要<b class='flag-5'>區(qū)別</b>對比

    【正點原子STM32MP257開發(fā)板試用】基于 DeepLab 模型的圖像分割

    :https://arxiv.org/pdf/1706.05587 應(yīng)用場景 自動駕駛:用于道路、車輛、行人等目標(biāo)的精確分割。 醫(yī)學(xué)影像分析:用于腫瘤、器官等區(qū)域的分割。 衛(wèi)星圖像分析
    發(fā)表于 06-21 21:11

    YOLOv8水果檢測示例代碼換成640輸入圖像出現(xiàn)目標(biāo)框繪制錯誤的原因 ?

    \",中的best.kmodel替換為640輸入圖像,model_input_size=[640,640],就會出現(xiàn)目標(biāo)檢測目標(biāo)框位置混亂,目標(biāo)
    發(fā)表于 06-18 06:37

    基于LockAI視覺識別模塊:C++目標(biāo)檢測

    檢測是計算機視覺領(lǐng)域中的一個關(guān)鍵任務(wù),它不僅需要識別圖像中存在哪些對象,還需要定位這些對象的位置。具體來說,目標(biāo)檢測算法會輸出每個檢測到的對
    發(fā)表于 06-06 14:43

    labview調(diào)用yolo目標(biāo)檢測分割、分類、obb

    labview調(diào)用yolo目標(biāo)檢測、分割、分類、obb、pose深度學(xué)習(xí),支持CPU和GPU推理,32/64位labview均可使用。 (yolov5~yolov12)
    發(fā)表于 03-31 16:28

    DLPC3479圖像模式和光控制模式的區(qū)別是什么?

    之間區(qū)別? 問題三:我使用FPGA將圖像 傳送給dlpc3479進(jìn)行處理,在operating mode 中應(yīng)該選取上述哪一項? 萬分感謝
    發(fā)表于 02-24 08:27

    采用華為云 Flexus 云服務(wù)器 X 實例部署 YOLOv3 算法完成目標(biāo)檢測

    一、前言 1.1 開發(fā)需求 這篇文章講解:?采用華為云最新推出的 Flexus 云服務(wù)器 X 實例部署 YOLOv3 算法,完成圖像分析、目標(biāo)檢測。 隨著計算機視覺技術(shù)的飛速發(fā)展,深度學(xué)習(xí)模型如
    的頭像 發(fā)表于 01-02 12:00 ?851次閱讀
    采用華為云 Flexus 云服務(wù)器 X 實例部署 YOLOv3 算法完成<b class='flag-5'>目標(biāo)</b><b class='flag-5'>檢測</b>

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測模型

    ,目標(biāo)物體周圍復(fù)雜的背景信息可能會干擾分類結(jié)果,使得分類器難以專注于真正重要的區(qū)域。 在深入探討了圖像分類任務(wù)及其面臨的挑戰(zhàn)之后,我們現(xiàn)在將目光轉(zhuǎn)向一個更為復(fù)雜的計算機視覺問題——目標(biāo)檢測
    發(fā)表于 12-19 14:33

    設(shè)計帶ADC電路時,如何用模擬地與數(shù)字地進(jìn)行分割來減少數(shù)字地對模擬地的影響?

    的地上進(jìn)行匯總單點連接嗎? 另外,我希望將模擬地對總電源地之間加了磁珠進(jìn)行連接,不知道這個磁珠應(yīng)該放在什么位置。(如2個圖中的磁珠的位置的區(qū)別
    發(fā)表于 12-03 07:56

    無損檢測與傳統(tǒng)檢測區(qū)別

    在工業(yè)生產(chǎn)和質(zhì)量控制中,檢測技術(shù)是確保產(chǎn)品安全性和可靠性的關(guān)鍵環(huán)節(jié)。隨著技術(shù)的發(fā)展,無損檢測技術(shù)逐漸成為了許多領(lǐng)域的首選檢測手段。本文將探討無損檢測與傳統(tǒng)
    的頭像 發(fā)表于 11-25 11:38 ?2024次閱讀

    手冊上新 |迅為RK3568開發(fā)板NPU例程測試

    PPOCR-Det語義分割 6.7 PPOCR-System 6.8 ppseg圖像分割 6.9 ppyoloe目標(biāo)檢測 6.10 res
    發(fā)表于 10-23 14:06

    語義分割25種損失函數(shù)綜述和展望

    本綜述提供了對25種用于圖像分割的損失函數(shù)的全面且統(tǒng)一的回顧。我們提供了一種新穎的分類法,并詳細(xì)審查了這些損失函數(shù)如何在圖像分割中被定制和利用,強調(diào)了它們的重要特征和應(yīng)用,并進(jìn)行了系統(tǒng)
    的頭像 發(fā)表于 10-22 08:04 ?1982次閱讀
    語義<b class='flag-5'>分割</b>25種損失函數(shù)綜述和展望

    畫面分割器怎么連接

    器的基本原理 畫面分割器的工作原理是通過數(shù)字信號處理技術(shù),將多個視頻信號源(如攝像頭、DVR等)的圖像數(shù)據(jù)進(jìn)行處理,然后在一個監(jiān)視器上以分割的形式顯示出來。這些分割可以是1畫面、4畫面
    的頭像 發(fā)表于 10-17 09:29 ?1306次閱讀