圖像檢測(cè)和圖像分割有什么區(qū)別?
人工智能對(duì)于圖像處理有不同的任務(wù)。在本文中,我將介紹目標(biāo)檢測(cè)和圖像分割之間的區(qū)別。
在這兩個(gè)任務(wù)中,我們都希望找到圖像中某些感興趣的項(xiàng)目的位置。例如,我們可以有一組安全攝像頭照片,在每張照片上,我們想要識(shí)別照片中所有人的位置。
通常有兩種方法可以用于此:目標(biāo)檢測(cè)(Object Detection)和圖像分割(Image Segmentation)。
目標(biāo)檢測(cè)-預(yù)測(cè)包圍盒
當(dāng)我們說(shuō)到物體檢測(cè)時(shí),我們通常會(huì)說(shuō)到邊界盒。這意味著我們的圖像處理將在我們的圖片中識(shí)別每個(gè)人周?chē)木匦巍?/p>
邊框通常由左上角的位置(2 個(gè)坐標(biāo))和寬度和高度(以像素為單位)定義。
來(lái)自開(kāi)放圖像數(shù)據(jù)集的注釋圖像。家庭堆雪人,來(lái)自 mwvchamber。在CC BY 2.0許可下使用的圖像。
|
如何理解目標(biāo)檢測(cè) 如果我們回到任務(wù):識(shí)別圖片上的所有人,則可以理解通過(guò)邊界框進(jìn)行對(duì)象檢測(cè)的邏輯。 我們首先想到的解決方案是將圖像切成小塊,然后在每個(gè)子圖像上應(yīng)用圖像分類(lèi),以區(qū)別該圖像是否是人類(lèi)。對(duì)單個(gè)圖像進(jìn)行分類(lèi)是一項(xiàng)較容易的任務(wù),并且是對(duì)象檢測(cè)的一項(xiàng),因此,他們采用了這種分步方法。 當(dāng)前,YOLO模型(You Only Look Once)是解決此問(wèn)題的偉大發(fā)明。YOLO模型的開(kāi)發(fā)人員已經(jīng)構(gòu)建了一個(gè)神經(jīng)網(wǎng)絡(luò),該神經(jīng)網(wǎng)絡(luò)能夠立即執(zhí)行整個(gè)邊界框方法! |
|
|
當(dāng)前用于目標(biāo)檢測(cè)的最佳模型 YOLO Faster RCNN |
目標(biāo)分割-預(yù)測(cè)掩模
一步一步地掃描圖像的邏輯替代方法是遠(yuǎn)離畫(huà)框,而是逐像素地注釋圖像。
如果你這樣做,你將會(huì)有一個(gè)更詳細(xì)的模型,它基本上是輸入圖像的一個(gè)轉(zhuǎn)換。
來(lái)自開(kāi)放圖像數(shù)據(jù)集的注釋圖像。家庭堆雪人,來(lái)自 mwvchamber。在CC BY 2.0許可下使用的圖像。
|
如何理解圖像分割 這個(gè)想法很基本:即使在掃描產(chǎn)品上的條形碼時(shí),也可以應(yīng)用一種算法來(lái)轉(zhuǎn)換輸入信息(通過(guò)應(yīng)用各種過(guò)濾器),這樣,除了條形碼序列以外的所有信息在最終圖像中都不可見(jiàn)。 |
|
這是在圖像上定位條形碼的基本方法,但與在圖像分割中所發(fā)生的情況類(lèi)似。 圖像分割的返回格式稱(chēng)為掩碼:與原始圖像大小相同的圖像,但是對(duì)于每個(gè)像素,它只有一個(gè)布爾值來(lái)指示對(duì)象是否存在。 如果我們?cè)试S多個(gè)類(lèi)別,它就會(huì)變得更加復(fù)雜:例如,它可以將一個(gè)海灘景觀(guān)分為三類(lèi):空氣、海洋和沙子。 |
|
|
當(dāng)下圖像分割的最佳模型 Mask RCNN Unet Segnet |
比較總結(jié)
|
對(duì)象檢測(cè) 輸入是一個(gè)矩陣(輸入圖像),每個(gè)像素有 3 個(gè)值(紅、綠、藍(lán)),如果是黑色和白色,則每個(gè)像素有 1 個(gè)值 輸出是由左上角和大小定義的邊框列表 |
|
|
圖像分割 輸入是一個(gè)矩陣(輸入圖像),每個(gè)像素有 3 個(gè)值(紅、綠、藍(lán)),如果是黑色和白色,則每個(gè)像素有 1 個(gè)值 輸出是一個(gè)矩陣(掩模圖像),每個(gè)像素有一個(gè)包含指定類(lèi)別的值 |
責(zé)任編輯:lq
-
圖像處理
+關(guān)注
關(guān)注
28文章
1340瀏覽量
59160 -
圖像分割
+關(guān)注
關(guān)注
4文章
182瀏覽量
18671 -
圖像檢測(cè)
+關(guān)注
關(guān)注
0文章
35瀏覽量
12135
原文標(biāo)題:計(jì)算機(jī)視覺(jué):圖像檢測(cè)和圖像分割有什么區(qū)別?
文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
電壓放大器在全導(dǎo)波場(chǎng)圖像目標(biāo)識(shí)別的損傷檢測(cè)實(shí)驗(yàn)的應(yīng)用
傳音TEX AI團(tuán)隊(duì)斬獲ICCV 2025大型視頻目標(biāo)分割挑戰(zhàn)賽雙料亞軍
目標(biāo)追蹤的簡(jiǎn)易實(shí)現(xiàn):模板匹配
工業(yè)質(zhì)檢再升級(jí):復(fù)雜網(wǎng)絡(luò)檢測(cè)模型破解多場(chǎng)景檢測(cè)難題
迅為RK3576開(kāi)發(fā)板攝像頭實(shí)時(shí)推理測(cè)試-ppseg?圖像分割
圖像采集卡與視頻采集卡的主要區(qū)別對(duì)比
【正點(diǎn)原子STM32MP257開(kāi)發(fā)板試用】基于 DeepLab 模型的圖像分割
YOLOv8水果檢測(cè)示例代碼換成640輸入圖像出現(xiàn)目標(biāo)框繪制錯(cuò)誤的原因 ?
基于LockAI視覺(jué)識(shí)別模塊:C++目標(biāo)檢測(cè)
labview調(diào)用yolo目標(biāo)檢測(cè)、分割、分類(lèi)、obb
如何使用離線(xiàn)工具od SPSDK生成完整圖像?
DLPC3479圖像模式和光控制模式的區(qū)別是什么?
采用華為云 Flexus 云服務(wù)器 X 實(shí)例部署 YOLOv3 算法完成目標(biāo)檢測(cè)

目標(biāo)檢測(cè)和圖像分割之間的區(qū)別
評(píng)論