chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

tensorflow和python的關(guān)系_tensorflow與pytorch的區(qū)別

姚小熊27 ? 來源:網(wǎng)絡(luò)整理 ? 作者:網(wǎng)絡(luò)整理 ? 2020-12-04 14:54 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

tensorflowpython的關(guān)系

Tensorflow和Python有什么關(guān)系?Tensorflow是Python的機器學習庫,Python的庫有很多,如Tensorflow、NumPy、Httpie、Django、Flask、Ansible。我們知道章魚有很多手,如果把Python比作是章魚的話,那Tensorflow就是章魚的一只手。

tensorflow與pytorch的區(qū)別

1.實現(xiàn)方式:符號式編程vs命令式編程

tensorflow是純符號式編程,而pytorch是命令式編程。

命令式編程優(yōu)點是實現(xiàn)方便,缺點是運行效率低。

符號式編程通常是在計算流程完全定義好后才被執(zhí)行,因此效率更高,但缺點是實現(xiàn)復(fù)雜。

2.圖的定義:動態(tài)定義vs靜態(tài)定義

兩個框架都是在張量上進行運算,但是卻存在著很大的差別。

TensorFlow遵循“數(shù)據(jù)即代碼,代碼即數(shù)據(jù)”的理念,可以在運行之前靜態(tài)的定義圖,然后調(diào)用session來執(zhí)行圖。

pytorch中圖的定義是動態(tài)化的,可以隨時定義、隨時更改、隨時執(zhí)行節(jié)點。

因此相對而言,pytorch更加靈活,更加方便調(diào)試。

3.可視化:tensorboard vs nothing

我認為TensorFlow最吸引人的地方之一就是tensorboard,可以清晰的看出計算圖、網(wǎng)絡(luò)架構(gòu),而pytorch自己沒有類似tensorboard的工具,但是pytorch可以導(dǎo)入tensorboardx或者matplotlib這類工具包用于數(shù)據(jù)可視化。
責任編輯:YYX

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • python
    +關(guān)注

    關(guān)注

    56

    文章

    4848

    瀏覽量

    88886
  • tensorflow
    +關(guān)注

    關(guān)注

    13

    文章

    330

    瀏覽量

    61636
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    812

    瀏覽量

    14413
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    【上海晶珩睿莓1開發(fā)板試用體驗】TensorFlow-Lite物體歸類(classify)

    目前尚未得知睿莓1開發(fā)板上面有NPU或者DPU之類的額外處理器,因此使用樹莓派系列使用最廣泛的TensorFlow-Lite庫進行物體歸類,使用CPU運行代碼,因此占用的是CPU的算力。在
    發(fā)表于 09-12 22:43

    無法將Tensorflow Lite模型轉(zhuǎn)換為OpenVINO?格式怎么處理?

    Tensorflow Lite 模型轉(zhuǎn)換為 OpenVINO? 格式。 遇到的錯誤: FrontEnd API failed with OpConversionFailure:No translator found for TFLite_Detection_PostProcess node.
    發(fā)表于 06-25 08:27

    用樹莓派搞深度學習?TensorFlow啟動!

    介紹本頁面將指導(dǎo)您在搭載64位Bullseye操作系統(tǒng)的RaspberryPi4上安裝TensorFlow。TensorFlow是一個專為深度學習開發(fā)的大型軟件庫,它消耗大量資源。您可以在
    的頭像 發(fā)表于 03-25 09:33 ?799次閱讀
    用樹莓派搞深度學習?<b class='flag-5'>TensorFlow</b>啟動!

    TensorFlow模型轉(zhuǎn)換為中間表示 (IR) 時遇到不一致的形狀錯誤怎么解決?

    使用命令轉(zhuǎn)換為 Tensorflow* 模型: mo --input_model ../models/middlebury_d400.pb --input_shape [1,352,704,6
    發(fā)表于 03-07 08:20

    使用OpenVINO? 2020.4.582將自定義TensorFlow 2模型轉(zhuǎn)換為中間表示 (IR)收到錯誤怎么解決?

    轉(zhuǎn)換自定義 TensorFlow 2 模型 mask_rcnn_inception_resnet_v2_1024x1024_coco17 要 IR 使用模型優(yōu)化器命令: 注意上面的鏈接可能無法
    發(fā)表于 03-07 07:28

    將YOLOv4模型轉(zhuǎn)換為IR的說明,無法將模型轉(zhuǎn)換為TensorFlow2格式怎么解決?

    遵照 將 YOLOv4 模型轉(zhuǎn)換為 IR 的 說明,但無法將模型轉(zhuǎn)換為 TensorFlow2* 格式。 將 YOLOv4 darknet 轉(zhuǎn)換為 Keras 模型時,收到 TypeError: buffer is too small for requested array 錯誤。
    發(fā)表于 03-07 07:14

    如何將Keras H5模型轉(zhuǎn)換為中間表示 (IR) 格式?

    第 1 步: 將 Keras H5 模型轉(zhuǎn)換為保存的型號格式 安裝 依賴關(guān)系: cd deployment_toolsmodel_optimizerinstall_prerequisites
    發(fā)表于 03-07 06:11

    Tensorflow Efficientdet-d0模型轉(zhuǎn)換為OpenVINO? IR失敗了,怎么解決?

    使用轉(zhuǎn)換命令 mo --saved_model_dir /home/obs-56/effi/saved_model 將 TensorFlow* efficientdet-d0 模型轉(zhuǎn)換為 IR
    發(fā)表于 03-06 08:18

    可以使用OpenVINO?工具包將中間表示 (IR) 模型轉(zhuǎn)換為TensorFlow格式嗎?

    無法將中間表示 (IR) 模型轉(zhuǎn)換為 TensorFlow* 格式
    發(fā)表于 03-06 06:51

    使用各種TensorFlow模型運行模型優(yōu)化器時遇到錯誤非法指令怎么解決?

    使用各種 TensorFlow 模型運行模型優(yōu)化器時遇到 [i]錯誤非法指令
    發(fā)表于 03-05 09:56

    TensorFlow saved_model格式轉(zhuǎn)換為IR遇到錯誤怎么解決?

    TensorFlow saved_model格式轉(zhuǎn)換為 IR。 遇到錯誤: FrontEnd API failed with OpConversionFailure: : No translator found for TensorListFromTensor node.
    發(fā)表于 03-05 09:12

    為什么無法使用OpenVINO?模型優(yōu)化器轉(zhuǎn)換TensorFlow 2.4模型?

    :python3 mo_tf.py --saved_model_dir /ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/saved_model
    發(fā)表于 03-05 09:07

    OpenVINO?是否與TensorFlow集成支持Raspberry Pi?

    無法確定OpenVINO?是否與 TensorFlow* 集成支持 Raspberry Pi。
    發(fā)表于 03-05 08:26

    為什么無法將TensorFlow自定義模型轉(zhuǎn)換為IR格式?

    TensorFlow* 自定義模型轉(zhuǎn)換為 IR 格式: mo --data_type FP16 --saved_model_dir--input_shape (1,150,150,3
    發(fā)表于 03-05 07:26

    為什么無法將自定義EfficientDet模型從TensorFlow 2轉(zhuǎn)換為中間表示(IR)?

    將自定義 EfficientDet 模型從 TensorFlow* 2 轉(zhuǎn)換 為 IR 時遇到錯誤: [ ERROR ] Exception occurred during running replacer \"REPLACEMENT_ID\" ()
    發(fā)表于 03-05 06:29