chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于內(nèi)存的人工智能神經(jīng)網(wǎng)絡(luò)架構(gòu)

姚小熊27 ? 來源:人工智能實驗室 ? 作者:人工智能實驗室 ? 2020-12-18 13:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在過去十年左右的時間里,研究人員已經(jīng)開發(fā)了多種基于人工神經(jīng)網(wǎng)絡(luò)(ANN)的計算模型。盡管已發(fā)現(xiàn)許多這些模型在特定任務(wù)上表現(xiàn)良好,但它們并不總是能夠識別可應(yīng)用于新問題的迭代,順序或算法策略。

過去的研究發(fā)現(xiàn),添加外部存儲器組件可以提高神經(jīng)網(wǎng)絡(luò)獲取這些策略的能力。但是,即使使用外部存儲器,它們也容易出錯,對提供給他們的數(shù)據(jù)變化敏感,并且需要大量的訓(xùn)練數(shù)據(jù)才能很好地發(fā)揮作用。

達(dá)姆施塔特技術(shù)大學(xué)的研究人員最近推出了一種新的基于記憶增強的基于ANN的體系結(jié)構(gòu),該體系結(jié)構(gòu)可以學(xué)習(xí)解決問題的抽象策略。這種結(jié)構(gòu)在將算法計算與依賴于數(shù)據(jù)的操作分開,將算法處理的信息流劃分為兩個不同的“流”。

研究人員在論文中寫道:“擴展具有外部記憶的神經(jīng)網(wǎng)絡(luò)已經(jīng)提高了他們學(xué)習(xí)這種策略的能力,但是它們?nèi)匀蝗菀壮霈F(xiàn)數(shù)據(jù)變化,難以學(xué)習(xí)可擴展和可轉(zhuǎn)移的解決方案,并且需要大量的訓(xùn)練數(shù)據(jù)。” “我們提出了神經(jīng)哈佛計算機,這是一種基于內(nèi)存的基于網(wǎng)絡(luò)的體系結(jié)構(gòu),該體系結(jié)構(gòu)通過將算法操作與數(shù)據(jù)操作解耦而采用抽象,通過拆分信息流和分離的模塊來實現(xiàn)?!?/p>

神經(jīng)哈佛計算機或NHC將輸入算法的信息流分為兩個不同的流,即數(shù)據(jù)流(包含特定于數(shù)據(jù)的操作)和控制流(包含算法操作)。最終,它可以區(qū)分與數(shù)據(jù)相關(guān)的模塊和算法模塊,從而創(chuàng)建兩個獨立但又耦合的存儲器。

NHC具有三個主要的算法模塊,分別稱為控制器,存儲器和總線。這三個組件具有不同的功能,但彼此交互以獲取可應(yīng)用于將來任務(wù)的抽象。研究人員在論文中解釋說:“這種抽象機制和進(jìn)化訓(xùn)練使學(xué)習(xí)健壯和可擴展的算法解決方案成為可能?!?/p>

研究人員通過使用NHC訓(xùn)練和運行11種不同的算法來評估NHC。然后,他們測試了這些算法的性能,以及它們的泛化和抽象能力。研究人員發(fā)現(xiàn),NHC可以可靠地運行所有11種算法,同時還可以使它們在比最初訓(xùn)練要完成的任務(wù)復(fù)雜的任務(wù)上表現(xiàn)出色?!霸?1種復(fù)雜程度各異的算法中,我們證明NHC可靠地學(xué)習(xí)了具有強大概括性和抽象性的算法解決方案,可以完美地概括和擴展到任意任務(wù)配置和復(fù)雜性,而這些復(fù)雜性和復(fù)雜性遠(yuǎn)遠(yuǎn)超出了訓(xùn)練期間所看到的,并且與數(shù)據(jù)無關(guān)表示法和任務(wù)領(lǐng)域”,

該研究人員小組最近進(jìn)行的研究證實了使用外部存儲組件來增強復(fù)雜程度不同的任務(wù)中基于神經(jīng)網(wǎng)絡(luò)的體系結(jié)構(gòu)的性能和可推廣性的潛力。將來,NHC體系結(jié)構(gòu)可用于合并和改進(jìn)不同ANN的功能,從而幫助開發(fā)可識別有用策略的模型,從而基于新數(shù)據(jù)做出準(zhǔn)確的預(yù)測。
責(zé)任編輯:YYX

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4827

    瀏覽量

    106797
  • 內(nèi)存
    +關(guān)注

    關(guān)注

    9

    文章

    3173

    瀏覽量

    76115
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49734

    瀏覽量

    261529
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    NMSIS NN 軟件庫是一組高效的神經(jīng)網(wǎng)絡(luò)內(nèi)核,旨在最大限度地提高 Nuclei N 處理器內(nèi)核上的神經(jīng)網(wǎng)絡(luò)的性能并最??大限度地減少其內(nèi)存占用。 該庫分為多個功能,每個功能涵蓋特定類別
    發(fā)表于 10-29 06:08

    人工智能工程師高頻面試題匯總:循環(huán)神經(jīng)網(wǎng)絡(luò)篇(題目+答案)

    后臺私信雯雯老師,備注:循環(huán)神經(jīng)網(wǎng)絡(luò),領(lǐng)取更多相關(guān)面試題隨著人工智能技術(shù)的突飛猛進(jìn),AI工程師成為了眾多求職者夢寐以求的職業(yè)。想要拿下這份工作,面試的時候得展示出你不僅技術(shù)過硬,還得能解決問題。所以
    的頭像 發(fā)表于 10-17 16:36 ?485次閱讀
    <b class='flag-5'>人工智能</b>工程師高頻面試題匯總:循環(huán)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>篇(題目+答案)

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的
    的頭像 發(fā)表于 09-28 10:03 ?705次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    神經(jīng)網(wǎng)絡(luò)的并行計算與加速技術(shù)

    隨著人工智能技術(shù)的飛速發(fā)展,神經(jīng)網(wǎng)絡(luò)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和廣泛的應(yīng)用前景。然而,神經(jīng)網(wǎng)絡(luò)模型的復(fù)雜度和規(guī)模也在不斷增加,這使得傳統(tǒng)的串行計算方式面臨著巨大的挑戰(zhàn),如計算速度慢、訓(xùn)練時間長等
    的頭像 發(fā)表于 09-17 13:31 ?886次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的并行計算與加速技術(shù)

    利用超微型 Neuton ML 模型解鎖 SoC 邊緣人工智能

    應(yīng)用。 為什么選擇 Neuton 作為開發(fā)人員,在產(chǎn)品中使用邊緣人工智能的兩個最大障礙是: ML 模型對于您所選微控制器的內(nèi)存來說太大。 創(chuàng)建自定義 ML 模型本質(zhì)上是一個手動過程,需要高度的數(shù)據(jù)科學(xué)知識
    發(fā)表于 08-31 20:54

    MAX78000采用超低功耗卷積神經(jīng)網(wǎng)絡(luò)加速度計的人工智能微控制器技術(shù)手冊

    人工智能(AI)需要超強的計算能力,而Maxim則大大降低了AI計算所需的功耗。MAX78000是一款新型的AI微控制器,使神經(jīng)網(wǎng)絡(luò)能夠在互聯(lián)網(wǎng)邊緣端以超低功耗運行,將高能效的AI處理與經(jīng)過驗證
    的頭像 發(fā)表于 05-08 11:42 ?714次閱讀
    MAX78000采用超低功耗卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>加速度計<b class='flag-5'>的人工智能</b>微控制器技術(shù)手冊

    MAX78002帶有低功耗卷積神經(jīng)網(wǎng)絡(luò)加速器的人工智能微控制器技術(shù)手冊

    人工智能(AI)需要超強的計算能力,而Maxim則大大降低了AI計算所需的功耗。MAX78002是一款新型的AI微控制器,使神經(jīng)網(wǎng)絡(luò)能夠在互聯(lián)網(wǎng)邊緣端以超低功耗運行,將高能效的AI處理與經(jīng)過驗證
    的頭像 發(fā)表于 05-08 10:16 ?600次閱讀
    MAX78002帶有低功耗卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>加速器<b class='flag-5'>的人工智能</b>微控制器技術(shù)手冊

    開售RK3576 高性能人工智能主板

    ZYSJ-2476B 高性能智能主板,采用瑞芯微 RK3576 高性能 AI 處理器、神經(jīng)網(wǎng)絡(luò)處理器 NPU, Android 14.0/debian11/ubuntu20.04 操作系統(tǒng)
    發(fā)表于 04-23 10:55

    【「芯片通識課:一本書讀懂芯片技術(shù)」閱讀體驗】從deepseek看今天芯片發(fā)展

    的: 神經(jīng)網(wǎng)絡(luò)處理器(NPU)是一種模仿人腦神經(jīng)網(wǎng)絡(luò)的電路系統(tǒng),是實現(xiàn)人工智能神經(jīng)網(wǎng)絡(luò)計算的專用處理器,主要用于人工智能深度學(xué)習(xí)模型的加速
    發(fā)表于 04-02 17:25

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?1307次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過訓(xùn)練數(shù)據(jù)自動調(diào)整網(wǎng)絡(luò)參數(shù),實現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務(wù),無需人工進(jìn)行復(fù)雜的特征工程。 泛化能力強 : BP神經(jīng)網(wǎng)絡(luò)通過訓(xùn)練數(shù)據(jù)學(xué)習(xí)到的特征表示
    的頭像 發(fā)表于 02-12 15:36 ?1585次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?1274次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1340次閱讀

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓(xùn)練過程主要分為兩個階段:前向傳播和反向傳播。以下是訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型的步驟: 一、前向傳播 前向傳播
    的頭像 發(fā)表于 02-12 15:10 ?1463次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01
    的頭像 發(fā)表于 01-09 10:24 ?2247次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>架構(gòu)</b>方法