chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

一種激光雷達增強的SfM流程

新機器視覺 ? 來源:新機器視覺 ? 作者:Weikun Zhen Yaoyu Hu ? 2021-01-07 13:59 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

摘要

盡管運動恢復結(jié)構(gòu)(SfM)作為一種成熟的技術(shù)已經(jīng)在許多應用中得到了廣泛的應用,但現(xiàn)有的SfM算法在某些情況下仍然不夠魯棒。例如,比如圖像通常在近距離拍攝以獲得詳細的紋理才能更好的重建場景細節(jié),這將導致圖像之間的重疊較少,從而降低估計運動的精度。在本文中,我們提出了一種激光雷達增強的SfM流程,這種聯(lián)合處理來自激光雷達和立體相機的數(shù)據(jù),以估計傳感器的運動。結(jié)果表明,在大尺度環(huán)境下,加入激光雷達有助于有效地剔除虛假匹配圖像,并顯著提高模型的一致性。在不同的環(huán)境下進行了實驗,測試了該算法的性能,并與最新的SfM算法進行了比較。

CMU Smith Hall重建點云模型(灰色),覆蓋視覺特征點(紅色)

相關(guān)工作與主要貢獻

基于機器人的檢測需求越來越大,需要對橋梁、建筑物等大型土木工程設施的高分辨率圖像數(shù)據(jù)進行處理。這些應用通常使用高分辨率、寬視場(FOV)相機,相機在離結(jié)構(gòu)表面近距離處拍攝,以獲得更豐富的視覺細節(jié)。這些特性對標準SfM算法提出了新的挑戰(zhàn)。首先,大多數(shù)可用的全局或增量SfM方案都是基于單個攝像機的,因此不能直接恢復比例。更重要的是,由于視場的限制,相鄰圖像之間的重疊區(qū)域被縮小,從而導致姿態(tài)圖只能局部連通,從而影響運動估計的精度。這個問題在大規(guī)模環(huán)境中變得更加重要。

為了解決上述挑戰(zhàn)本文提出了一種新的方案,它擴展了傳統(tǒng)的SfM算法,使之適用于立體相機和LiDAR傳感器。這項工作基于一個簡單的想法,即激光雷達的遠距離能力可以用來抑制圖像之間的相對運動。更具體地說,我們首先實現(xiàn)了一個立體視覺SfM方案,它計算攝像機的運動并估計視覺特征(結(jié)構(gòu))的三維位置。然后將激光雷達點云和視覺特征融合到一個單一的優(yōu)化函數(shù)中,迭代求解該優(yōu)化函數(shù)以最優(yōu)化相機的運動和結(jié)構(gòu)。在我們的方案中,LiDAR數(shù)據(jù)從兩個方面增強了SfM算法:

1)LiDAR點云用于檢測和排除無效的圖像匹配,使基于立體相機的SfM方案對視覺模糊具有更強的魯棒性;

2)LiDAR點云與視覺特征在聯(lián)合優(yōu)化框架中相結(jié)合,以減少運動漂移。我們的方案可以實現(xiàn)比最先進的SfM算法更一致和更精確的運動估計。

本文的工作主要有以下幾個方面:

1)將全局SfM技術(shù)應用于立體攝像系統(tǒng),實現(xiàn)了攝像機在真實尺度下的運動初始化。

2) 激光雷達數(shù)據(jù)被用來排除無效的圖像匹配,進一步加強了方案的可靠性。

3) 通過聯(lián)合立體相機和激光雷達的共同的數(shù)據(jù),擴展了我們先前提出的聯(lián)合優(yōu)化方案,提高了所建模型的精度和一致性。

激光雷達增強的雙目SFM

該方案以一組立體圖像和相關(guān)的LiDAR點云作為輸入,以三角化特征點和合并的LiDAR點云的格式生成覆蓋環(huán)境的三維模型。下圖顯示了我們的LiDAR增強SfM方案的過程

e040f9d4-503c-11eb-8b86-12bb97331649.png

光雷達增強的雙目SFM方案

A、對應特征點搜索

給定立體圖像對,計算對應關(guān)系包括特征提取、匹配和幾何驗證。首先,我們依賴OpenMVG庫從圖像中提取SIFT特征。然后使用所提供的級聯(lián)哈希方法對特征進行窮盡匹配。最后,通過對雙目極線約束進行幾何的驗證,驗證了兩幅圖像之間的匹配。具體地說,利用RANSAC估計基本矩陣F,然后用來檢查匹配特征的極線誤差。只保留幾何上一致的特征,以便進一步計算。

B、 相對運動估計

由于立體圖像對是預先校準的,所以我們將一對左右圖像作為一個獨立的單元,為了估計相對運動,標準的立體匹配方法依賴于兩對圖像中所有四幅圖像所觀察到的特征點,而我們觀察到許多點只被三幅甚至兩幅圖像共享。忽略這些點可能會丟失估計相機運動的重要信息,特別是在圖像重疊有限的情況下。因此,這里選擇顯式地處理兩個位姿點之間共享視圖的不同情況。具體來說,我們考慮至少3個視圖共享的特征點,以確保尺度的重建。

雖然只有2個視圖的點可以幫助估計旋轉(zhuǎn)和平移方向,但是由于這些點通常來自于下圖所示的小重疊區(qū)域,所以這里忽略它們。另一方面,兩個位姿點之間也可能存在多種類型的共享特性。為了簡化問題,我們選擇對應關(guān)系最多的類型來求解相對運動。在三視圖情況下,首先用立體圖像對,對特征點點進行三角化,然后用RANSAC+P3P算法求解。

在四視圖的情況下,我們遵循標準的處理方法,首先對兩個站點中的點進行三角化,然后應用RANSAC+PCA配準算法找到相對運動。在這兩種情況下,都使用非線性優(yōu)化程序來優(yōu)化計算的姿態(tài)和三角化,通過最小化內(nèi)線的重投影誤差。最后,對所有姿態(tài)進行變換以表示左攝像機之間的相對運動。

e0683e86-503c-11eb-8b86-12bb97331649.png

兩視圖要素的區(qū)域示例。左:一位姿右圖像;中右:另一位姿的左右圖像。共同的小區(qū)域靠近邊界并用紅框標記。

e0951834-503c-11eb-8b86-12bb97331649.png

兩個位姿點(紅色和藍色圓圈對)之間共享特征(灰點)的示例。彩色條表示已知的校準后的立體圖像對。(a)-(d)三視圖;(e)四視圖。

C、相對運動驗證

一旦找到了相對運動,就可以建立一個姿態(tài)圖,其中節(jié)點表示圖像幀的姿態(tài),邊表示相對運動。全局姿態(tài)可以通過平均位姿圖上的相對運動來求解。然而,由于環(huán)境中的視覺模糊性(見下圖),可能存在無效的邊緣,并且直接平均相對運動可能會產(chǎn)生不正確的全局姿勢。因此,設計了一個兩步邊緣驗證方案來去除異常值。

(1)在第一步中,檢查所有圖像幀對的激光雷達點云的重疊,并剔除不一致的點云。

(2)第二步中檢查回環(huán)的一致性。(具體方法可在論文中有詳細說明)

e1a524e4-503c-11eb-8b86-12bb97331649.png

由于視覺模糊導致的無效相對運動的例子。(a) 由于相同的停車標志,兩對圖像匹配不正確。(b) 相應的點云來自兩個車站,標志用紅框標出。(c) 合并的占用網(wǎng)格顯示不正確的對齊方式(紅色橢圓)。在這種情況下,一致性比為0.56,而有效相對運動的一致性比通常超過0.7

D、 全局位姿初始化

這部分主要介紹優(yōu)化全局幀的代價函數(shù):

e20a6e3a-503c-11eb-8b86-12bb97331649.png

E、三角化與RANSAC

本文采用文魯棒三角化方法,對每個三維特征點使用RANSAC來尋找最佳的三角化視圖。對于每個軌跡,它是不同相機視圖中一個特征點的觀察值的集合,隨機對兩個視圖進行采樣,并使用DLT方法對該點進行三角化。通過將該點投影到其他視圖上并選擇具有較小重投影誤差的視圖,可以找到更匹配的視圖。此過程重復多次,并保留最大的一組內(nèi)部視圖(至少需要3個視圖)。最后,通過最小化重投影誤差,利用內(nèi)聯(lián)視圖優(yōu)化特征點在全局結(jié)構(gòu)中的位姿。

F、聯(lián)合位姿優(yōu)化

基于視覺的SfM算法的位姿優(yōu)化通常通過束調(diào)整(BA)來實現(xiàn)。然而,由于多個系統(tǒng)原因,如特征位置不準確、標定不準確、對應異常值等,位姿估計在長距離內(nèi)可能會產(chǎn)生較大的漂移,尤其是在無法有效地發(fā)現(xiàn)閉合環(huán)路的情況下。為了解決這個問題,我們考慮利用激光雷達的遠距離能力來限制相機的運動,該方案將相機機和激光雷達觀測值聯(lián)合最優(yōu)化。這部分內(nèi)容可查看原文理解公式。

實驗結(jié)果

A、實驗裝置

下圖具有多個機載傳感器,包括兩個Ximea彩色攝像頭(1200萬像素,全局快門)和一個安裝在連續(xù)旋轉(zhuǎn)電機上的Velodyne Puck激光雷達(VLP-16)。利用編碼器測量的電機角度,將VLP-16的掃描點轉(zhuǎn)換成固定的基架。

傳感器盒子和數(shù)據(jù)集。

B、 相對運動估計

e277d4e8-503c-11eb-8b86-12bb97331649.png

上圖:從4個視圖和3個視圖點顯示求解的對數(shù)。下圖:不同三元組檢查的邊數(shù)直方圖。

e29980fc-503c-11eb-8b86-12bb97331649.png

左圖:初始化的位姿圖有4個視圖特征。右:使用多視圖初始化位姿圖

C、 相對運動驗證

這里比較了所提出的基于網(wǎng)格的檢查(GC,閾值為0.6)和成功率檢查(SR)與OpenMVG使用的旋轉(zhuǎn)循環(huán)檢查和transform(旋轉(zhuǎn)和平移)循環(huán)檢查(TC)的異常值排除法的性能。

e2be2aba-503c-11eb-8b86-12bb97331649.png

D、 聯(lián)合測量

這里展示聯(lián)合觀測建模在聯(lián)合優(yōu)化中的優(yōu)勢。如下圖所示

e3194742-503c-11eb-8b86-12bb97331649.png

激光雷達點云(灰色)與重建視覺特征(紅色)疊加。左:沒有聯(lián)合觀測。右:聯(lián)合觀測。

E、重建

對收集到的數(shù)據(jù)集的重建結(jié)果下圖所示。在第一行,展示了小型混凝土結(jié)構(gòu)的重建。第二行比較了使用COLMAP、OpenMVG和我們的方案Smith-Hall重建結(jié)果。在這三個測試中,使用左右圖像進行重建。然而,COLMAP和OpenMVG都無法處理由停車標志,和有限的重疊圖像造成的視覺模糊。因此,生成的模型要么不一致,要么不完整。使用我們的方案有助于有效地排除無效的運動,并允許建立一個更一致的模型。

e343c490-503c-11eb-8b86-12bb97331649.png

重建的結(jié)果對比

總結(jié)

本文提出了一種利用激光雷達信息提高立體SfM方案的魯棒性、準確性、一致性和完備性的LiDAR增強立體SfM方案。實驗結(jié)果表明,該方法能有效地找到有效的運動位姿,消除視覺模糊。此外,實驗結(jié)果還表明,結(jié)合相機和激光雷達的聯(lián)合觀測有助于完全約束外部變換。最后,與最先進的SfM方法相比,LiDAR增強SfM方案可以產(chǎn)生更一致的重建結(jié)果。

責任編輯:xj

原文標題:基于激光雷達增強的三維重建

文章出處:【微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2573

    文章

    54304

    瀏覽量

    785322
  • 三維
    +關(guān)注

    關(guān)注

    1

    文章

    523

    瀏覽量

    29823
  • 激光雷達
    +關(guān)注

    關(guān)注

    977

    文章

    4372

    瀏覽量

    195272

原文標題:基于激光雷達增強的三維重建

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    CES 2025激光雷達觀察:“千線”激光雷達亮相,頭部廠商布局具身智能

    電子發(fā)燒友網(wǎng)報道(文/梁浩斌)每年CES都是激光雷達廠商發(fā)布新品的節(jié)點,在今年CES 2025上,有超過30家激光雷達廠商參展。頭部的廠商,禾賽、速騰聚創(chuàng)、Seyond都推出了新產(chǎn)品,另外國內(nèi)多家
    的頭像 發(fā)表于 01-12 09:08 ?3311次閱讀
    CES 2025<b class='flag-5'>激光雷達</b>觀察:“千線”<b class='flag-5'>激光雷達</b>亮相,頭部廠商布局具身智能

    探索 ARRAYRDM - 0112A20 - QFN:用于汽車激光雷達的近紅外增強型 SiPM

    在當今電子科技飛速發(fā)展的時代,汽車激光雷達技術(shù)作為自動駕駛領域的關(guān)鍵環(huán),正受到越來越多的關(guān)注。而在激光雷達系統(tǒng)中,傳感器的性能起著決定性作用。今天,我們就來深入了解款專為汽車
    的頭像 發(fā)表于 11-28 09:19 ?225次閱讀

    激光雷達為什么會出現(xiàn)串擾的問題?

    飛行時間(Time-of-Flight,TOF)和連續(xù)波調(diào)頻型(Frequency-Modulated Continuous Wave,F(xiàn)MCW)兩。 圖片源自:網(wǎng)絡 脈沖型TOF激光雷達雷達的工作原理比較直觀,發(fā)射器每隔
    的頭像 發(fā)表于 11-04 10:42 ?520次閱讀
    <b class='flag-5'>激光雷達</b>為什么會出現(xiàn)串擾的問題?

    華為,激光雷達! 車載激光雷達市場的“隱形冠軍”

    達到93.4%!相比此前1-5月份的三家份額91%進步提高,激光雷達產(chǎn)業(yè)正形成“寡頭”競爭格局。 值得關(guān)注的是,華為以 64.38 萬顆的裝機量穩(wěn)居榜首,市場份額攀升至 41.1%,成為車載激光雷達市場的“隱形冠軍”。 ? 作
    的頭像 發(fā)表于 10-23 18:57 ?2947次閱讀
    華為,<b class='flag-5'>激光雷達</b>第<b class='flag-5'>一</b>! 車載<b class='flag-5'>激光雷達</b>市場的“隱形冠軍”

    【SOA是什么?】#激光雷達

    激光雷達
    天津見合八方光電科技有限公司
    發(fā)布于 :2025年07月15日 14:39:59

    SPAD席卷車載激光雷達市場

    電子發(fā)燒友網(wǎng)報道(文/梁浩斌)上周我們報道了款新推出的激光雷達ASIC方案,值得關(guān)注的是該方案中與ASIC搭配的傳感器均選擇了SiPM。當然從成本的角度來看,作為第三方的激光雷達ASIC方案
    的頭像 發(fā)表于 06-13 00:59 ?4879次閱讀

    一種新型激光雷達慣性視覺里程計系統(tǒng)介紹

    針對具有挑戰(zhàn)性的光照條件和惡劣環(huán)境,本文提出了LIR-LIVO,這是一種輕量級且穩(wěn)健的激光雷達-慣性-視覺里程計系統(tǒng)。通過采用諸如利用深度與激光雷達點云關(guān)聯(lián)實現(xiàn)特征的均勻深度分布等先進技術(shù),以及利用
    的頭像 發(fā)表于 04-28 11:18 ?775次閱讀
    <b class='flag-5'>一種</b>新型<b class='flag-5'>激光雷達</b>慣性視覺里程計系統(tǒng)介紹

    激光雷達調(diào)研紀要

    、長安已跟上,廣汽、上汽等后續(xù)也可能加入,但具體配置情況因各車企方案而異。 不同級別自動駕駛配置差異: L3級自動駕駛因需安全冗余,會配備多顆激光雷達以實現(xiàn)360度或270度覆蓋,般應用于30萬以上車型;L2+車型通常只配備
    的頭像 發(fā)表于 04-17 16:54 ?751次閱讀

    激光雷達技術(shù):自動駕駛的應用與發(fā)展趨勢

    激光雷達一種通過發(fā)射激光束并接收反射光束來測量物體距離和速度的傳感器。它能夠生成周圍環(huán)境的精確三維地圖,為自動駕駛車輛提供關(guān)鍵的感知信息。激光雷達的主要組成部分包括
    的頭像 發(fā)表于 03-10 10:16 ?1399次閱讀
    <b class='flag-5'>激光雷達</b>技術(shù):自動駕駛的應用與發(fā)展趨勢

    DeepSeek:2025年激光雷達技術(shù)與行業(yè)應用趨勢

    近日DeepSeek的火爆,我想知道它對激光雷達技術(shù)與行業(yè)應用趨勢的看法。以下內(nèi)容來源于DeepSeek-R1,僅供參考。2025年激光雷達技術(shù)與行業(yè)應用趨勢:深度分析與預測、技術(shù)趨勢:從固態(tài)化到
    的頭像 發(fā)表于 02-06 10:40 ?2829次閱讀
    DeepSeek:2025年<b class='flag-5'>激光雷達</b>技術(shù)與行業(yè)應用趨勢

    激光雷達領域的新秀利器—SPAD23

    分析在激光雷達系統(tǒng)中的關(guān)鍵應用以及在激光雷達系統(tǒng)中核心器件的技術(shù)特性
    的頭像 發(fā)表于 01-23 14:35 ?1176次閱讀
    <b class='flag-5'>激光雷達</b>領域的新秀利器—SPAD23

    禾賽拒絕“激光雷達無用論”

    在特斯拉發(fā)布FSD新版本后,視覺派和激光雷達派的爭論再次升溫。 與此同時,激光雷達企業(yè)也開始在車載智駕領域之外尋找新的市場機會。 在CES 2025上,禾賽科技推出了系列新的激光雷達
    的頭像 發(fā)表于 01-16 11:58 ?1683次閱讀
    禾賽拒絕“<b class='flag-5'>激光雷達</b>無用論”

    則消息引爆激光雷達行業(yè)!特斯拉竟然在自研激光雷達?

    電子發(fā)燒友網(wǎng)報道(文/梁浩斌)則消息引爆激光雷達行業(yè)?上周業(yè)界流傳的份會議紀要稱,有自動駕駛專家透露,特斯拉已經(jīng)設計了自己的激光雷達,并正在與大陸集團合作,將自己開發(fā)的
    的頭像 發(fā)表于 12-30 00:09 ?2750次閱讀

    科普:文了解固態(tài)和半固態(tài)激光雷達

    激光雷達(LiDAR,Laser Detecting and Ranging)作為一種先進的傳感技術(shù),通過發(fā)射激光脈沖并測量其返回時間來計算目標距離,被廣泛應用于自動駕駛、機器人、工業(yè)自動化等領域
    的頭像 發(fā)表于 12-23 18:06 ?3597次閱讀

    激光雷達,明年要降價至200美元

    20萬以下車型。 而最近,禾賽科技CEO李帆表示,遠距ADAS激光雷達產(chǎn)品計劃在明年價格減半,令激光雷達對于15萬以下更廉價的電動汽車也有吸引力。現(xiàn)階段15萬以上電動汽車的激光雷達
    的頭像 發(fā)表于 12-16 11:36 ?6042次閱讀
    <b class='flag-5'>激光雷達</b>,明年要降價至200美元