轉自光明科技:



責任編輯:xj
原文標題:睿芯團隊再獲突破,全球首款商用圖神經(jīng)網(wǎng)絡加速IP核正式發(fā)布
文章出處:【微信公眾號:SmarCo中科睿芯】歡迎添加關注!文章轉載請注明出處。
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。
舉報投訴
-
神經(jīng)網(wǎng)絡
+關注
關注
42文章
4829瀏覽量
106820 -
IP
+關注
關注
5文章
1849瀏覽量
154938 -
IP核
+關注
關注
4文章
339瀏覽量
51723
原文標題:睿芯團隊再獲突破,全球首款商用圖神經(jīng)網(wǎng)絡加速IP核正式發(fā)布
文章出處:【微信號:gh_d66fc4899f4f,微信公眾號:SmarCo中科睿芯】歡迎添加關注!文章轉載請注明出處。
發(fā)布評論請先 登錄
相關推薦
熱點推薦
CNN卷積神經(jīng)網(wǎng)絡設計原理及在MCU200T上仿真測試
數(shù)的提出很大程度的解決了BP算法在優(yōu)化深層神經(jīng)網(wǎng)絡時的梯度耗散問題。當x>0 時,梯度恒為1,無梯度耗散問題,收斂快;當x<0 時,該層的輸出為0。
CNN
發(fā)表于 10-29 07:49
NMSIS神經(jīng)網(wǎng)絡庫使用介紹
NMSIS NN 軟件庫是一組高效的神經(jīng)網(wǎng)絡內核,旨在最大限度地提高 Nuclei N 處理器內核上的神經(jīng)網(wǎng)絡的性能并最??大限度地減少其內存占用。
該庫分為多個功能,每個功能涵蓋特定類別
發(fā)表于 10-29 06:08
在Ubuntu20.04系統(tǒng)中訓練神經(jīng)網(wǎng)絡模型的一些經(jīng)驗
本帖欲分享在Ubuntu20.04系統(tǒng)中訓練神經(jīng)網(wǎng)絡模型的一些經(jīng)驗。我們采用jupyter notebook作為開發(fā)IDE,以TensorFlow2為訓練框架,目標是訓練一個手寫數(shù)字識別的神經(jīng)網(wǎng)絡
發(fā)表于 10-22 07:03
CICC2033神經(jīng)網(wǎng)絡部署相關操作
在完成神經(jīng)網(wǎng)絡量化后,需要將神經(jīng)網(wǎng)絡部署到硬件加速器上。首先需要將所有權重數(shù)據(jù)以及輸入數(shù)據(jù)導入到存儲器內。
在仿真環(huán)境下,可將其存于一個文件,并在 Verilog 代碼中通過 readmemh 函數(shù)
發(fā)表于 10-20 08:00
液態(tài)神經(jīng)網(wǎng)絡(LNN):時間連續(xù)性與動態(tài)適應性的神經(jīng)網(wǎng)絡
1.算法簡介液態(tài)神經(jīng)網(wǎng)絡(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡架構,其設計理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的神經(jīng)結構,盡管這種微生物的
神經(jīng)網(wǎng)絡的并行計算與加速技術
問題。因此,并行計算與加速技術在神經(jīng)網(wǎng)絡研究和應用中變得至關重要,它們能夠顯著提升神經(jīng)網(wǎng)絡的性能和效率,滿足實際應用中對快速響應和大規(guī)模數(shù)據(jù)處理的需求。神經(jīng)網(wǎng)絡并行
睿海光電800G光模塊助力全球AI基建升級
在全球數(shù)字化轉型加速的背景下,超高速光模塊作為數(shù)據(jù)中心與AI算力網(wǎng)絡的核心部件,正經(jīng)歷從400G向800G、1.6T的迭代浪潮。在這一賽道中,深圳市睿海光電科技有限公司(以下簡稱“
發(fā)表于 08-13 19:05
NVIDIA實現(xiàn)神經(jīng)網(wǎng)絡渲染技術的突破性增強功能
發(fā)者能使用 NVIDIA GeForce RTX GPU 中的 AI Tensor Cores,在游戲的圖形渲染管線內加速神經(jīng)網(wǎng)絡渲染。
BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡的比較
BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經(jīng)網(wǎng)絡 : BP神經(jīng)網(wǎng)絡是一種多層的前饋神經(jīng)網(wǎng)絡
BP神經(jīng)網(wǎng)絡的優(yōu)缺點分析
BP神經(jīng)網(wǎng)絡(Back Propagation Neural Network)作為一種常用的機器學習模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡優(yōu)缺點的分析: 優(yōu)點
什么是BP神經(jīng)網(wǎng)絡的反向傳播算法
BP神經(jīng)網(wǎng)絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經(jīng)網(wǎng)絡的有效方法。以下是關于BP神經(jīng)網(wǎng)絡的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
BP神經(jīng)網(wǎng)絡與深度學習的關系
BP神經(jīng)網(wǎng)絡與深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經(jīng)網(wǎng)絡的基本概念 BP神經(jīng)網(wǎng)絡,即反向傳播神經(jīng)網(wǎng)絡(Backpropagation Neural N
BP神經(jīng)網(wǎng)絡的基本原理
BP神經(jīng)網(wǎng)絡(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個核心過程。以下是關于BP神經(jīng)網(wǎng)絡基本原理的介紹: 一、網(wǎng)絡結構 BP神經(jīng)網(wǎng)絡
王欣然教授團隊提出基于二維材料的高效稀疏神經(jīng)網(wǎng)絡硬件方案
two-dimensional semiconductor ferroelectric field-effect transistors”為題發(fā)表最新研究進展,報道了基于二維材料的高效稀疏神經(jīng)網(wǎng)絡硬件解決方案
人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法
在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡 ? 人工神經(jīng)網(wǎng)絡模型之所

睿芯團隊全球首款商用圖神經(jīng)網(wǎng)絡加速IP核正式發(fā)布
評論