chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀(guān)看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

利用ImageNet訓(xùn)練了一個(gè)能降噪、超分和去雨的圖像預(yù)訓(xùn)練模型

深度學(xué)習(xí)實(shí)戰(zhàn) ? 來(lái)源:深度學(xué)習(xí)實(shí)戰(zhàn) ? 作者:深度學(xué)習(xí)實(shí)戰(zhàn) ? 2021-03-03 16:05 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

說(shuō)到Transformer,大家可能會(huì)想到BERT[1]、GPT-3[2]等等,這些都是利用無(wú)監(jiān)督訓(xùn)練的大型預(yù)訓(xùn)練模型。既然Transformer也能用在CV上,那么能不能做類(lèi)似的事情呢?這篇論文利用ImageNet訓(xùn)練了一個(gè)能降噪、超分和去雨的圖像預(yù)訓(xùn)練模型(IPT)。

Motivation

目前很多l(xiāng)ow-level的task其實(shí)都是有一定相關(guān)性的,就是在一個(gè)low-level task上預(yù)訓(xùn)練對(duì)另一個(gè)task是有幫助的,但是目前幾乎沒(méi)有人去做相關(guān)的工作。而且pre-training在某些數(shù)據(jù)稀缺的task上就很有必要,并且無(wú)論在CV還是NLP,使用pre-trained model是非常常見(jiàn)的事情。對(duì)于一些輸入和輸出都是image的low-level算法來(lái)說(shuō),目前的pre-trained model顯然是不適合的。

準(zhǔn)備數(shù)據(jù)集

因?yàn)門(mén)ransformer需要大量的數(shù)據(jù)去擬合,所以必須使用一個(gè)大型的數(shù)據(jù)集。在這篇論文中,作者用的是imagenet。對(duì)于imagenet的每一張圖片生成各種任務(wù)對(duì)應(yīng)的圖像對(duì),例如對(duì)于超分(super-resolution)來(lái)說(shuō),模型的輸入數(shù)據(jù)是imagenet經(jīng)過(guò)下采樣的數(shù)據(jù),而標(biāo)簽是原圖。

IPT

在上篇文章介紹過(guò)了,因?yàn)門(mén)ransformer本身是用于NLP領(lǐng)域的,輸入應(yīng)該是一個(gè)序列,因此這篇的論文做法和ViT[3]一樣,首先需要把feature map分塊,每個(gè)patch則視為一個(gè)word。但是不同的是,因?yàn)镮PT是同時(shí)訓(xùn)練多個(gè)task,因此模型定義了多個(gè)head和tail分別對(duì)應(yīng)不同的task。

整個(gè)模型架構(gòu)包含四個(gè)部分:用于提取特征的heads、Transformer Encoder、Transformer Decoder和把feature map還原成輸出的tails。

Heads

不同的head對(duì)應(yīng)于不同的task,由于IPT需要處理多個(gè)task,因此是一個(gè)multi-head的結(jié)構(gòu),每個(gè)head由3層卷積層組成。Heads要完成的任務(wù)可以描述為:fH = Hi(x),x是輸入圖像,f是第i個(gè)Head的輸出。

Transformer encoder

在輸入Transformer前,需要將Head輸出的feature map分成一個(gè)個(gè)patch,同樣還需要加入位置編碼信息,與ViT不同,這里是直接相加就可以作為T(mén)ransformer Encoder的輸入了,不需要做linear projection。

ef62fdc4-778b-11eb-8b86-12bb97331649.png

fpi是feature map的一個(gè)patch,Epi∈ RP*P×C是fpi的learnable position encoding。LN是layer normalization,MSA是多頭self-attention模塊,F(xiàn)FN是feed forward network。

Transformer decoder

Transformer decoder的輸入時(shí)encoder的輸出和task embedding。這些task embedding是可訓(xùn)練的,不同的task embedding代表處理不同的task。decoder的計(jì)算可以表示如下:

efacf5dc-778b-11eb-8b86-12bb97331649.png

fEi是指encoder的輸出,fDi是指decoder的輸出。

Tails

Tails與Heads是相對(duì)應(yīng)的,但是不同的tail的輸出的大小可能不一樣,例如超分,做超分時(shí)輸出比輸入的圖像大,因此與其它的tail輸出的大小可能不一樣。

Loss

loss由兩部分組成,分別是Lcontrastive和Lsupervised的加權(quán)和。

Lsupervised是指IPT的輸出與label的L1 loss。

加入Lcontrastive是為了最小化Transformer decoder對(duì)于來(lái)自同一張圖的不同patch的輸出的距離,最大化對(duì)于不同圖片的patch之間的輸出的距離。

實(shí)驗(yàn)與結(jié)果

作者用了32塊NVIDIA Tesla V100,以256的batch size訓(xùn)練了200個(gè)epoch。

Reference

[1]Jacob Devlin, Ming-Wei Chang, Kenton Lee, and KristinaToutanova. Bert: Pre-training of deep bidirectionaltransformers for language understanding. arXiv preprintarXiv:1810.04805, 2018.

[2]Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.Language models are few-shot learners. arXiv preprintarXiv:2005.14165, 2020.

[3]Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv:2010.11929, 2020.

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀(guān)點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3645

    瀏覽量

    51685
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1229

    瀏覽量

    26031
  • nlp
    nlp
    +關(guān)注

    關(guān)注

    1

    文章

    491

    瀏覽量

    23182

原文標(biāo)題:視覺(jué)新范式Transformer之IPT

文章出處:【微信號(hào):gh_a204797f977b,微信公眾號(hào):深度學(xué)習(xí)實(shí)戰(zhàn)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型些經(jīng)驗(yàn)

    模型。 我們使用MNIST數(shù)據(jù)集,訓(xùn)練個(gè)卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,用于手寫(xiě)數(shù)字識(shí)別。
    發(fā)表于 10-22 07:03

    基于大規(guī)模人類(lèi)操作數(shù)據(jù)預(yù)訓(xùn)練的VLA模型H-RDT

    近年來(lái),機(jī)器人操作領(lǐng)域的VLA模型普遍基于跨本體機(jī)器人數(shù)據(jù)集預(yù)訓(xùn)練,這類(lèi)方法存在兩大局限:不同機(jī)器人本體和動(dòng)作空間的差異導(dǎo)致統(tǒng)訓(xùn)練困難;現(xiàn)
    的頭像 發(fā)表于 08-21 09:56 ?756次閱讀
    基于大規(guī)模人類(lèi)操作數(shù)據(jù)<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>的VLA<b class='flag-5'>模型</b>H-RDT

    海思SD3403邊緣計(jì)算AI數(shù)據(jù)訓(xùn)練概述

    模型,將模型轉(zhuǎn)化為嵌入式AI模型模型升級(jí)AI攝像機(jī),進(jìn)行AI識(shí)別應(yīng)用。 AI訓(xùn)練模型是不斷迭
    發(fā)表于 04-28 11:11

    請(qǐng)問(wèn)如何在imx8mplus上部署和運(yùn)行YOLOv5訓(xùn)練模型

    我正在從事 imx8mplus yocto 項(xiàng)目。我已經(jīng)在自定義數(shù)據(jù)集上的 YOLOv5 上訓(xùn)練了對(duì)象檢測(cè)模型。它在 ubuntu 電腦上運(yùn)行良好?,F(xiàn)在我想在我的 imx8mplus 板上運(yùn)行該模型
    發(fā)表于 03-25 07:23

    用PaddleNLP為GPT-2模型制作FineWeb二進(jìn)制預(yù)訓(xùn)練數(shù)據(jù)集

    作者:算力魔方創(chuàng)始人/英特爾創(chuàng)新大使劉力 《用PaddleNLP在4060單卡上實(shí)踐大模型預(yù)訓(xùn)練技術(shù)》發(fā)布后收到讀者熱烈反響,很多讀者要求進(jìn)步講解更多的技術(shù)細(xì)節(jié)。本文主要針對(duì)大語(yǔ)言
    的頭像 發(fā)表于 03-21 18:24 ?3770次閱讀
    用PaddleNLP為GPT-2<b class='flag-5'>模型</b>制作FineWeb二進(jìn)制<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>數(shù)據(jù)集

    利用RAKsmart服務(wù)器托管AI模型訓(xùn)練的優(yōu)勢(shì)

    AI模型訓(xùn)練需要強(qiáng)大的計(jì)算資源、高效的存儲(chǔ)和穩(wěn)定的網(wǎng)絡(luò)支持,這對(duì)服務(wù)器的性能提出了較高要求。而RAKsmart服務(wù)器憑借其核心優(yōu)勢(shì),成為托管AI模型訓(xùn)練的理想選擇。下面,AI部落小編為
    的頭像 發(fā)表于 03-18 10:08 ?510次閱讀

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功怎么處理?

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功咋辦,試了好幾個(gè)模型壓縮了也不行,ram占用過(guò)大,有無(wú)解決方案?
    發(fā)表于 03-11 07:18

    從Open Model Zoo下載的FastSeg大型公共預(yù)訓(xùn)練模型,無(wú)法導(dǎo)入名稱(chēng)是怎么回事?

    從 Open Model Zoo 下載的 FastSeg 大型公共預(yù)訓(xùn)練模型。 運(yùn)行 converter.py 以將 FastSeg 大型模型轉(zhuǎn)換為中間表示 (IR): pyth
    發(fā)表于 03-05 07:22

    用PaddleNLP在4060單卡上實(shí)踐大模型預(yù)訓(xùn)練技術(shù)

    作者:算力魔方創(chuàng)始人/英特爾創(chuàng)新大使劉力 之前我們分享了《從零開(kāi)始訓(xùn)練個(gè)大語(yǔ)言模型需要投資多少錢(qián)》,其中高昂的預(yù)
    的頭像 發(fā)表于 02-19 16:10 ?2114次閱讀
    用PaddleNLP在4060單卡上實(shí)踐大<b class='flag-5'>模型</b><b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>技術(shù)

    騰訊公布大語(yǔ)言模型訓(xùn)練新專(zhuān)利

    大語(yǔ)言模型訓(xùn)練過(guò)程中引入第摘要文本和第二摘要文本,為模型提供了更為豐富的學(xué)習(xí)信息。這兩個(gè)摘要文本在信息量上存在差異,且第
    的頭像 發(fā)表于 02-10 09:37 ?692次閱讀

    【「基于大模型的RAG應(yīng)用開(kāi)發(fā)與優(yōu)化」閱讀體驗(yàn)】+大模型微調(diào)技術(shù)解讀

    集對(duì)模型進(jìn)行進(jìn)訓(xùn)練的過(guò)程。 大模型微調(diào)是利用預(yù)訓(xùn)練
    發(fā)表于 01-14 16:51

    模型訓(xùn)練框架(五)之Accelerate

    Hugging Face 的 Accelerate1是個(gè)用于簡(jiǎn)化和加速深度學(xué)習(xí)模型訓(xùn)練的庫(kù),它支持在多種硬件配置上進(jìn)行分布式訓(xùn)練,包括 C
    的頭像 發(fā)表于 01-14 14:24 ?1761次閱讀

    KerasHub統(tǒng)、全面的預(yù)訓(xùn)練模型庫(kù)

    深度學(xué)習(xí)領(lǐng)域正在迅速發(fā)展,在處理各種類(lèi)型的任務(wù)中,預(yù)訓(xùn)練模型變得越來(lái)越重要。Keras 以其用戶(hù)友好型 API 和對(duì)易用性的重視而聞名,始終處于這動(dòng)向的前沿。Keras 擁有專(zhuān)用的內(nèi)
    的頭像 發(fā)表于 12-20 10:32 ?763次閱讀

    GPU是如何訓(xùn)練AI大模型

    在AI模型訓(xùn)練過(guò)程中,大量的計(jì)算工作集中在矩陣乘法、向量加法和激活函數(shù)等運(yùn)算上。這些運(yùn)算正是GPU所擅長(zhǎng)的。接下來(lái),AI部落小編帶您了解GPU是如何訓(xùn)練AI大模型的。
    的頭像 發(fā)表于 12-19 17:54 ?1287次閱讀

    使用英特爾AI PC為YOLO模型訓(xùn)練加速

    之后,情況有了新的變化,PyTorch2.5正式開(kāi)始支持英特爾顯卡,也就是說(shuō),此后我們能夠借助英特爾 銳炫 顯卡來(lái)進(jìn)行模型訓(xùn)練了。
    的頭像 發(fā)表于 12-09 16:14 ?2082次閱讀
    使用英特爾AI PC為YOLO<b class='flag-5'>模型</b><b class='flag-5'>訓(xùn)練</b>加速