chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

最實用的的五種機器學習算法

電子工程師 ? 來源:安全牛 ? 作者:Alfred.N ? 2021-03-24 16:14 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文將推薦五種機器學習算法,你應該考慮是否將它們投入應用。這五種算法覆蓋最常用于聚類、分類、數(shù)值預測和樸素貝葉斯等四個門類。

1. 聚類算法:k-means

聚類算法的目標:觀察輸入數(shù)據(jù)集,并借助數(shù)據(jù)集中不同樣本的特征差異來努力辨別不同的數(shù)據(jù)組。聚類算法最強大之處在于,它不需要本文中其他算法所需的訓練過程,您只需簡單地提供數(shù)據(jù),告訴算法你想創(chuàng)造多少簇(樣本的組別),算法會為每個簇來分配一個編號。這種規(guī)范聚類算法就是k-means。

舉個例子,你的應用可用k-means來按照營銷目的區(qū)分你的網(wǎng)絡服務的用戶。你只需要輸入(從電子商務網(wǎng)站獲取的)一組客戶的購買歷史,并確定四組客戶以進行分類營銷。此時,你為k-means提供了一個數(shù)據(jù)表,每行代表一名客戶,每列則是各種對客戶的購買行為特征(如成為客戶的時間、每月評價花費、每月評價訂單量、地理位置、對當天航運的使用比例等等)。算法會為表格增加一欄:編號1-4來表示不同的分組。

提示:使用kmeans函數(shù)或rxKmeans. 用以執(zhí)行bt rx的函數(shù)是ScaleR的一部分,所以不能支持量很大的數(shù)據(jù)集。

2&3. 兩類、多類分類算法

分類算法的目標:輸入一行數(shù)據(jù)及一個類目名稱表,通過對數(shù)據(jù)的校驗估測其所屬的類目。分類算法通常按照分類時的類目總數(shù)分為兩類和多類分類算法。在你使用種算法預測新數(shù)據(jù)前,你需要預先使用一組類目可知的數(shù)據(jù)對算法加以訓練。

不妨舉個簡單的例子來說明兩類分類算法:想象一個你希望得到是/否(或真/偽)的兩極化情形。此時,類別分別為“是”和“否”(或者“真”和“偽”)。兩類分類的典型應用是:根據(jù)歷史天氣條件(如溫度、風速、降水、氣壓)和航班信息(如航空公司、起飛時間、航班號)來預測未來航班會推遲15分鐘離開還是照常起飛。輸出分為“延遲”和“不延遲”兩類。在大多數(shù)情況下,兩類分類算法的核心是邏輯回歸的使用,后者用于生成一個在0到1范圍內(nèi)的值。如果該值小于0.5,往往會解釋為第一個類(如“不延遲”),否則會劃為第二類(如“延遲”)。

另一個應用是:預測貸款的償還情況,來作為拓展信用的一部分。你必須提供貸款人的相關數(shù)據(jù),譬如信用分數(shù)、房產(chǎn)年限、工作時長、信用卡債務總額、數(shù)據(jù)采集年份以及有貸款違約記錄。分類為“會違約”和“不會違約”。這個例子之所以非常有趣,是因為對于一些機器學習所處理的難題來說,僅僅有預測結果并不足夠,還必須知曉結論是怎樣得出的。這時多組分類算法形成的決策樹就派上用場了,決策樹中的多組分類算法可以分析從輸入到最終生成預測的過程?;氐劫J款這一案例,不妨想象你是銀行方,當你拒絕了消費者的貸款新的信用卡要求時,消費者的下一個問題可能是“為什么?”。通過決策樹,你可以具體回答:“好吧,你的信用分數(shù)太低了,信用卡債臺高筑,工作年頭又太短了?!?/p>

充分理解兩類分類算法后,進一步理解多類分類算法就順理成章了。多類分類算法可應用于電影院,來告訴后者某部電影究竟是墊底的票房毒藥(不僅口碑差,而且主流觀眾不感興趣)、口碑導向(叫好不叫座)還是票房導向(口碑差,但是票房高)。三個分類分別是“毒藥”、“口碑導向”、“票房導向”。你也可以使用決策樹,來了解一部電影為何會得到這樣的評價。

提示:使用glm或rxLogit來進行兩類或多類分類。進行多類分類時,你可以使用rpart或rxDTree來建立可觀察決策樹。

4. 數(shù)值預測

數(shù)值預測算法的目標:根據(jù)一組輸入,預測一個具體數(shù)值。仍然使用上文中航班延誤的例子,我們現(xiàn)在要做的不再是預測航班是否會推遲15分鐘,數(shù)值預測算法將讓你知曉航班將具體被推遲多久。數(shù)值預測算法的核心是線性回歸的使用(不要與分類算法使用的邏輯回歸混淆),通過對歷史數(shù)據(jù)的線性擬合,線性回歸可以有效地進行數(shù)值預測。最好的例子是股票的預測,線性回歸根據(jù)過往數(shù)據(jù)的分布,擬合出一條最合適的直線,延長這條線你就可以預測將來的股票價格。

提示:使用Im或rxLinMod函數(shù)。

5. 樸素貝葉斯算法

最后,你的采納清單上還缺一個機器學習中勞苦功高的算法——樸素貝葉斯算法。它的核心是因果關系。更具體地說,樸素貝葉斯算法是在給定已知的成因的情況下,預測這一成因將產(chǎn)生的效果以及效果的程度?,F(xiàn)實生活中的典型例子是癌癥檢測。你可以通過對病人特定病狀(效果)的觀察,來預測病人患有癌癥的概率(疾病是成因)。再舉個和你相關的例子,樸素貝葉斯算法可以根據(jù)你已購買的商品為你推薦其他商品。例如,你網(wǎng)購了一些雞蛋,算法會提醒你買些牛奶,因為你的購買歷史顯示:購買雞蛋(成因)會導致購買牛奶(效果)。樸素貝葉斯有趣的一點在于,它可以用于分類和數(shù)值預測。。

提示:使用naiveBayes和rxNaiveBayes函數(shù)。

結論

好了,你有了一個實用算法的清單。現(xiàn)在,重新審視你的應用,想一想哪些地方可以增添點機器學習帶來的智能性。

責任編輯:lq6

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 聚類算法
    +關注

    關注

    2

    文章

    118

    瀏覽量

    12492
  • 樸素貝葉斯
    +關注

    關注

    0

    文章

    12

    瀏覽量

    3519
  • 機器學習算法

    關注

    2

    文章

    47

    瀏覽量

    6796
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    8常用的CRC算法分享

    CRC 計算單元可按所選擇的算法和參數(shù)配置來生成數(shù)據(jù)流的 CRC 碼。有些應用中,可利用 CRC 技術來驗證數(shù)據(jù)的傳輸和存儲的完整性。 8 常用的 CRC 算法,包括: CRC16_IBM
    發(fā)表于 11-13 07:25

    量子機器學習入門:三數(shù)據(jù)編碼方法對比與應用

    在傳統(tǒng)機器學習中數(shù)據(jù)編碼確實相對直觀:獨熱編碼處理類別變量,標準化調整數(shù)值范圍,然后直接輸入模型訓練。整個過程更像是數(shù)據(jù)清洗,而非核心算法組件。量子機器
    的頭像 發(fā)表于 09-15 10:27 ?451次閱讀
    量子<b class='flag-5'>機器</b><b class='flag-5'>學習</b>入門:三<b class='flag-5'>種</b>數(shù)據(jù)編碼方法對比與應用

    PID控制算法學習筆記資料

    用于新手學習PID控制算法。
    發(fā)表于 08-12 16:22 ?7次下載

    FPGA在機器學習中的具體應用

    隨著機器學習和人工智能技術的迅猛發(fā)展,傳統(tǒng)的中央處理單元(CPU)和圖形處理單元(GPU)已經(jīng)無法滿足高效處理大規(guī)模數(shù)據(jù)和復雜模型的需求。FPGA(現(xiàn)場可編程門陣列)作為一靈活且高效的硬件加速平臺
    的頭像 發(fā)表于 07-16 15:34 ?2608次閱讀

    【嘉楠堪智K230開發(fā)板試用體驗】K230機器視覺相關功能體驗

    K230開發(fā)板攝像頭及AI功能測評 攝像頭作為機器視覺應用的基礎,能夠給機器學習模型提供輸入,提供輸入的質量直接影響機器學習模型的效果。 K
    發(fā)表于 07-08 17:25

    【「# ROS 2智能機器人開發(fā)實踐」閱讀體驗】視覺實現(xiàn)的基礎算法的應用

    學習建議 對于初學者,建議先通過仿真(如Gazebo)驗證算法,再遷移到真實機器人,以降低硬件調試成本。 多參與開源社區(qū)(如ROS2的GitHub項目),學習前沿技術并貢獻代碼
    發(fā)表于 05-03 19:41

    十大鮮為人知卻功能強大的機器學習模型

    本文轉自:QuantML當我們談論機器學習時,線性回歸、決策樹和神經(jīng)網(wǎng)絡這些常見的算法往往占據(jù)了主導地位。然而,除了這些眾所周知的模型之外,還存在一些鮮為人知但功能強大的算法,它們能夠
    的頭像 發(fā)表于 04-02 14:10 ?898次閱讀
    十大鮮為人知卻功能強大的<b class='flag-5'>機器</b><b class='flag-5'>學習</b>模型

    **【技術干貨】Nordic nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機器學習的完美結合**

    機器學習算法,解決傳感器數(shù)據(jù)采集難題! 1. nRF54系列支持OTA嗎? 答:支持!nRF54L系列基于Zephyr的MCUBOOT和SMP DFU庫,支持BLE和UART等多種OTA方式
    發(fā)表于 04-01 00:00

    請問STM32部署機器學習算法硬件至少要使用哪個系列的芯片?

    STM32部署機器學習算法硬件至少要使用哪個系列的芯片?
    發(fā)表于 03-13 07:34

    機器學習模型市場前景如何

    當今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計算能力的飛速提升,機器學習模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機器學習模型市場
    的頭像 發(fā)表于 02-13 09:39 ?609次閱讀

    華為云 Flexus X 實例部署安裝 Jupyter Notebook,學習 AI,機器學習算法

    前言 由于本人最近在學習一些機器算法,AI 算法的知識,需要搭建一個學習環(huán)境,所以就在最近購買的華為云 Flexus X 實例上安裝了
    的頭像 發(fā)表于 01-02 13:43 ?852次閱讀
    華為云 Flexus X 實例部署安裝 Jupyter Notebook,<b class='flag-5'>學習</b> AI,<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>算法</b>

    傳統(tǒng)機器學習方法和應用指導

    在上一篇文章中,我們介紹了機器學習的關鍵概念術語。在本文中,我們會介紹傳統(tǒng)機器學習的基礎知識和多種算法特征,供各位老師選擇。 01 傳統(tǒng)
    的頭像 發(fā)表于 12-30 09:16 ?1955次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法和應用指導

    【「具身智能機器人系統(tǒng)」閱讀體驗】1.全書概覽與第一章學習

    講解如何構造具身智能基礎模型的方法和步驟,包括數(shù)據(jù)采集、預處理、模型訓練和評估等。 在第四部分,介紹了具身智能機器人的計算挑戰(zhàn),包括計算加速、算法安全性和系統(tǒng)可靠性等內(nèi)容。 最后,在第部分介紹了一個
    發(fā)表于 12-27 14:50

    如何選擇云原生機器學習平臺

    當今,云原生機器學習平臺因其彈性擴展、高效部署、低成本運營等優(yōu)勢,逐漸成為企業(yè)構建和部署機器學習應用的首選。然而,市場上的云原生機器
    的頭像 發(fā)表于 12-25 11:54 ?686次閱讀

    zeta在機器學習中的應用 zeta的優(yōu)缺點分析

    的應用(基于低功耗廣域物聯(lián)網(wǎng)技術ZETA) ZETA作為一低功耗廣域物聯(lián)網(wǎng)(LPWAN)技術,雖然其直接應用于機器學習的場景可能并不常見,但它可以通過提供高效、穩(wěn)定的物聯(lián)網(wǎng)通信支持,間接促進
    的頭像 發(fā)表于 12-20 09:11 ?1599次閱讀