chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于數(shù)字圖像處理的紅外弱小目標(biāo)檢測

新機器視覺 ? 來源:聊大研究生會 ? 作者:聊大研究生會 ? 2021-04-18 10:28 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

基于數(shù)字圖像處理的紅外弱小目標(biāo)檢測

摘 要:隨著現(xiàn)代科技和紅外技術(shù)的飛速發(fā)展,在軍事和醫(yī)學(xué)領(lǐng)域利用紅外成像技術(shù)實現(xiàn)弱小目標(biāo)的檢測已經(jīng)越來越受到人們的重視。然而紅外圖像對人眼而言分辨率低,且圖像的對比度弱,視覺效果模糊,不利于我們提取其中的有效信息,因此需要針對圖像的特點進行處理,對圖像中有用的信息進行增強并抑制噪聲的干擾,最后將目標(biāo)檢測出來。

利用MATLAB 軟件來實現(xiàn)對紅外圖像弱小目標(biāo)的檢測。根據(jù)紅外圖像的特點,對紅外圖像進行預(yù)處理可以強化弱小目標(biāo)并弱化背景圖像。經(jīng)過預(yù)處理后目標(biāo)的特征已經(jīng)得到明顯增強,然后通過自適應(yīng)加權(quán)融合后獲得的特征圖中,目標(biāo)區(qū)域的灰度值已經(jīng)明顯高于其他區(qū)域,最后通過簡單的自適應(yīng)目標(biāo)分割就能將弱小目標(biāo)檢測出來。

1.引言

1.1案例背景

隨著我國紅外技術(shù)愈來愈加成熟,紅外成像技術(shù)實現(xiàn)弱小目標(biāo)的檢測技術(shù)已經(jīng)廣泛運用于軍事領(lǐng)域和醫(yī)療領(lǐng)域。尤其是在運用到現(xiàn)代高科技戰(zhàn)斗時,哪一方能夠在更早的、距離更遠的發(fā)現(xiàn)敵方的軍艦或?qū)?,就能提前進入警戒模式,牢牢掌握住敵方的動向,為指揮系統(tǒng)決策和武器系統(tǒng)贏得時間,對取得最后的勝利有著非常重要的意義。在醫(yī)學(xué)領(lǐng)域,運用紅外弱小目標(biāo)檢測技術(shù)可以檢測出更小的特征,進而提高診斷的準確性。紅外弱小目標(biāo)在成像系統(tǒng)中的特點可以簡單概括為“弱”和“小”兩個方面,所謂的“弱”反映到圖像上指的是目標(biāo)灰度,主要表現(xiàn)為對比度及信噪比較低;所謂“小”則指的是目標(biāo)的尺寸,主要表現(xiàn)為目標(biāo)像素點占整幅圖像像素點比例低, 要檢測的弱小目標(biāo)缺乏具體的形狀、大小和一些紋理特征。因為易受自然環(huán)境等因素的影響,使得紅外圖像成像效果大大降低,出現(xiàn)邊緣模糊不清等現(xiàn)象。由于我們所要檢測的目標(biāo)特征不清晰,且因為噪聲影響較大,很容易將真正待測目標(biāo)覆蓋,對我們最后的成功檢測了制造了較大的困難。而一幅目標(biāo)和背景對比度強,細節(jié)豐富的圖像會大大利于目標(biāo)的識別。因此為了使圖像更適合于人眼的的觀察,需要針對紅外圖像的特點對其中有用信息進行增強并抑制噪聲等干擾,改善圖像質(zhì)量。

對于紅外圖像弱小目標(biāo)檢測,先后提出了諸多算法,其中有,基于模糊分類的微小目標(biāo)檢測算法,但是它的適用范圍比較小,有諸多的局限性?;谛〔ㄗ冇驍U散濾波的弱小目標(biāo)檢測算法,該方法利用小波變換系數(shù)的方向特性和擴散濾波擴散方向的可選擇性,雖然檢測可以實現(xiàn),但在滿足檢測效果的同時實時性很難得到保證。

因此,基于數(shù)字圖像處理的紅外弱小目標(biāo)檢測,通過對圖像進行預(yù)處理,包括圖像增強、高斯濾波、對比度增強、灰度化、中值濾波去噪,可以使背景區(qū)域弱化,突出我們所要檢測的目標(biāo)對象。然后再提取紅外圖像的多個特征,對特征進行自適應(yīng)加權(quán)融合。在自適應(yīng)加權(quán)融合后的特征圖中,目標(biāo)區(qū)域的灰度值已經(jīng)明顯高于其他區(qū)域,最后通過簡單地閾值分割就能將弱小目標(biāo)檢測出來。該方法通過多特征的融合,提高了對弱小目標(biāo)檢測的準確性,還有有效的抑制了噪聲等因素的干擾。

1.2 理論基礎(chǔ)

紅外弱小目標(biāo)檢測視覺上來看是典型的點狀目標(biāo)檢測,因此紅外弱小目標(biāo)圖像的增強與定位屬于點狀目標(biāo)檢測的研究領(lǐng)域。紅外圖像弱小目標(biāo)與一般點狀目標(biāo)相比,具有其自身的特點:目標(biāo)所占圖像像素點相對較小、圖像對比度較低、易受噪聲和自然因素的影響等。傳統(tǒng)的目標(biāo)檢測算法中,如基于閾值分割、邊緣檢測、小波變換等算法,往往都假設(shè)弱小目標(biāo)在整幅圖像中具有較高的對比度和較好的細節(jié)描述,但這種假設(shè)在實際的紅外圖像檢測中往往不成立。由于受紅外圖像本身特點、目標(biāo)距離太遠,拍攝時自然環(huán)境等因素的影響,使其整幅圖像具有較低的對比度,而且目標(biāo)特征不清晰。這也會引起傳統(tǒng)目標(biāo)檢測算法的失效,所以需要在紅外弱小目標(biāo)圖像檢測前加入一定的預(yù)處理步驟。

圖像預(yù)處理一般是應(yīng)用于圖像識別、圖像表示等領(lǐng)域的一種前期處理。在圖像的采集和傳輸過程中,往往會因為某些原因?qū)е聢D像質(zhì)量降低。例如,從視覺主觀上觀察圖像中的物體,可能會發(fā)覺其輪廓位置過于鮮艷而顯得突兀;從被檢測目標(biāo)物的大小和形狀來看,圖像特征比較模糊、難以定位;從圖像對比度的角度來看,可能會受到某些噪聲的影響;從圖像整體來看,可能會發(fā)生某種失真、變形等。因此,待處理圖像在視覺直觀性和處理可行性等方面可能存在諸多干擾,我們不妨將其統(tǒng)稱為圖像質(zhì)量問題。圖像預(yù)處理正是用于圖像質(zhì)量的改善處理,通過一定的計算步驟進行適當(dāng)?shù)淖儞Q進而突出圖像中某些感興趣的信息,消除或降低干擾信息,如圖像對比度增強、圖像去噪或邊緣提取等處理。-般情況下,由于紅外圖像的采集需要考慮長距離,室外等因素,所得圖片難免會存在一定的噪聲干擾、檢測目標(biāo)與背景對比度低,邊緣模糊不清等各種問題,直接進行弱小目標(biāo)的檢測和提取往往會遇到困難。因此,本案例首先將紅外弱小目標(biāo)圖像進行預(yù)處理,改善圖像質(zhì)量,進而提高最終檢測的準確性。圖像預(yù)處理的基本方法有圖像灰度變換、頻域變換、直方圖變換、圖像去噪、圖像銳化、圖像色彩變換等。本案例將選擇其中的部分方法來進行裂縫圖像的預(yù)處理操作。經(jīng)過預(yù)處理后的圖像就能提取四個最簡特征進行加權(quán)融合成特征圖,通過簡單的閾值分割將目標(biāo)檢測出來。

2 .設(shè)計框架

這次的設(shè)計,使用MATLB工具,采用圖像處理技術(shù)對紅外弱小目標(biāo)圖像進行檢測。圖像預(yù)處理過程,對弱小目標(biāo)提取局部灰度最大值、局部對比度均值反差、局部變化量、局部平均梯度強度4個特征構(gòu)成特征向量,再對4個特征值進行自適應(yīng)加權(quán)融合,最后通過簡單的閾值分割等步驟完成了對紅外圖像中弱小目標(biāo)的檢測。主要的設(shè)計框圖如下所示:

b14268f6-9fbb-11eb-8b86-12bb97331649.png

圖一設(shè)計框架圖

3 .對紅外弱小目標(biāo)圖像的預(yù)處理

3.1灰度處理

彩色圖像灰度化已經(jīng)變成一種基礎(chǔ)的圖像處理技術(shù),在圖像預(yù)處理階段,都要把采集的圖像進行灰度化的處理,圖像進行灰度化之后可以為后續(xù)的處理提高速度?;叶然奶幚砭褪菍⒉噬玆,G,B分量值相等的一個過程,在本文中,運用已有函數(shù)rgb2gray()函數(shù)直接將紅外弱小目標(biāo)彩色圖像轉(zhuǎn)化為灰度圖像,為后續(xù)的目標(biāo)識別提高處理速度。但由于紅外圖像的特點,灰度化后的圖像從視覺效果上并不明顯。

b14b9a02-9fbb-11eb-8b86-12bb97331649.png

3.2圖像增強

圖像增強中有兩類重要的處理方法:一種是灰度變換,另一種是直方圖處理。在本文中主要運用灰度變換的進行圖像亮度的增強?;叶茸儞Q主要針對獨立的像素點進行處理,通過改變原始圖像數(shù)據(jù)所占據(jù)的灰度范圍而使圖像在視覺上得到良好的改變。如果選擇的灰度變換函數(shù)不同,即使是同一圖像也會得到不同的結(jié)果。

采用灰度變換法對圖像進行處理可以大大改善圖像的視覺效果。圖像的灰度變換一般可以分為線性變換、分段線性變換和非線性變換三種變換方式。紅外圖像一般比較暗這里運用線性變換對紅外圖像進行簡單的加法,提高它的亮度,從而可以看到那些隱藏在黑暗中的細節(jié),提高圖像的質(zhì)量。

b153f652-9fbb-11eb-8b86-12bb97331649.png

3.3 高斯濾波

在目前的紅外成像系統(tǒng)中,高斯噪聲占噪聲中主要的成分,因此在經(jīng)過后面的預(yù)處理步驟時需要先將高斯噪聲濾除。高斯濾波是一種線性濾波,廣泛用于抑制圖像中的高斯噪聲。高斯濾波的作用原理和均值濾波器比較相似,它的實質(zhì)就是對整幅圖像的像素點取其自身和它鄰域內(nèi)像素點的值進行加權(quán)取平均的過程。但均值濾波器的模板系數(shù)都是1,而高斯濾波器的模板系數(shù)會一直發(fā)生改變,具體會隨著模板中心的增大而減小。由于這個原因,高斯濾波對整幅圖像的模糊程度比較小,所以在預(yù)處理步驟采用高斯濾波進行紅外圖像的去噪,這樣既可以抑制圖像中的紅外圖像,又可以保留圖像中的細節(jié)特征,有利于最后的目標(biāo)識別。在這里采用3*3的模板,運用imfilter()函數(shù)來執(zhí)行高斯濾波操作。

b15c7f8e-9fbb-11eb-8b86-12bb97331649.png

3.4 對比度調(diào)整

紅外弱小目標(biāo)圖像的采集一般是在室外進行,容易受到大氣、光照、光機掃描系統(tǒng)缺陷等以及紅外成像自身特點等因素的影響,采集到的紅外弱小目標(biāo)圖像都整體偏暗,所以得到的圖像都存在對比度較低的現(xiàn)象。為了讓紅外弱小目標(biāo)和識別不受影響,所以需要對圖像進行增強處理來提高對比度,進一步調(diào)整圖像灰度。在這里運用imadjust()函數(shù)來執(zhí)行對比度調(diào)整,句法為g=imadjust(f,[],[],gamma);當(dāng)γ<1時,結(jié)果圖像比原始圖像亮,當(dāng)γ>1時,輸出的圖像比輸入圖像暗。本文中γ取值為1.1,輸出的結(jié)果要比原來圖像暗,對比度更明顯,有利于目標(biāo)的識別。

b16a25f8-9fbb-11eb-8b86-12bb97331649.png

圖五對比度調(diào)整圖像

3.5中值濾波

圖像邊緣一般集中了圖像的細節(jié)和高頻信息,如果通過領(lǐng)域平均法進行去噪,則往往會引起圖像邊緣的模糊,這也給紅外弱小目標(biāo)圖像的檢測帶來了許多的困難。非線性濾波方法可以在消除圖像的孤立點的同時,比較好的保持圖像中的細節(jié)信息。其中最常用的一種就是中值濾波,因為噪聲的出現(xiàn),使得該點的像素比周圍的像素都要亮很多或者暗很多。中值濾波是給出濾波用的模板,對模板中的像素值由大到小排列好,最終待處理像素的灰度值取這個模板中的灰度的中間值。主要思想是對像素領(lǐng)域向量化取中值來進行濾波,具有運算簡單、高效,在一定的條件下,中值濾波可以克服線性濾波器所帶來的圖像細節(jié)模糊,而且對濾除脈沖干擾及顆粒狀的噪聲最為有效。因此,只要選取合適的中值濾波模板就能將噪聲很好的濾除并且不會對目標(biāo)造成任何的干擾。在這里采用中值濾波的方法來對圖像進行去預(yù)處理步驟,運用medfilt2()函數(shù)來執(zhí)行。

b1753916-9fbb-11eb-8b86-12bb97331649.png

4 .弱小目標(biāo)特征提取及特征融合

4.1弱小目標(biāo)特征提取

通過對紅外圖像進行預(yù)處理過程,可以將我們有用的目標(biāo)信息得到增強,背景信息得到弱化,不需要提取過多的特征就可以將我們的弱小目標(biāo)檢測出來,本文中主要選取局部灰度最大值、局部對比度均值反差、局部變化量、局部平均梯度強度四個特征進行提取。

4.1.1局部灰度最大值

在紅外弱小目標(biāo)圖像的檢測中,目標(biāo)的發(fā)動機、羽煙或排氣管等灰度值一般都比背景的灰度值高,通過這一特點,選取局部灰度最大值這一特征進行提取來描述最后的目標(biāo)。它一般的表達式為:

b1a1e10a-9fbb-11eb-8b86-12bb97331649.png(4.1)

其中,表明與目標(biāo)相接近的一個模板,它是以像素點(i,j)為中心。f(i,j)則是指的第k行第l列的像素點它的灰度值大小。

4.1.2局部對比度均值反差

由于我們檢測的弱小目標(biāo)灰度值是高于背景灰度值,而局部對比度均值反差的主要是用來比較檢測目標(biāo)區(qū)域的平均灰度與相鄰區(qū)域平均灰度的之間差異性,所以通過對圖像預(yù)處理過程,可以用局部對比度均值反差這一特征進行提取。它一般的表達式為:

b1aa5786-9fbb-11eb-8b86-12bb97331649.png

(4.2)



其中,b1b47130-9fbb-11eb-8b86-12bb97331649.png表示一個比b1bd8a18-9fbb-11eb-8b86-12bb97331649.png更大的模板,b1b47130-9fbb-11eb-8b86-12bb97331649.png也是以像素點(i,j)為中心。b1cfaaf4-9fbb-11eb-8b86-12bb97331649.png是模板b1dfe27a-9fbb-11eb-8b86-12bb97331649.png中的像素數(shù),b1dfe27a-9fbb-11eb-8b86-12bb97331649.png表示模板b1b47130-9fbb-11eb-8b86-12bb97331649.png中的像素數(shù)。

4.1.3局部平均梯度強度

機場或軍艦這樣的紅外目標(biāo)通常都是人造的對象,與自然目標(biāo)相比更容易暴露出清晰的內(nèi)部細節(jié)。即使是彼此之間的平均強度相似,他們的局部平均梯度強度也不會相同,所以可以用局部對比度均值反差這一特征來描述弱小目標(biāo)特征。局部平均梯度強度的一般的表達式為:

b200fce4-9fbb-11eb-8b86-12bb97331649.png? ??(4.3)

其中,b20d5a02-9fbb-11eb-8b86-12bb97331649.pngb21c084a-9fbb-11eb-8b86-12bb97331649.pngb224ff0e-9fbb-11eb-8b86-12bb97331649.png

4.1.4局部變化量

局部變化量這一特征不同于局部對比度均值反差特征,局部變化量是主要檢測局部區(qū)域微弱強度變化的,它的一般表達式為:

b22f3e60-9fbb-11eb-8b86-12bb97331649.png(4.4)

其中b2365984-9fbb-11eb-8b86-12bb97331649.pngb2434568-9fbb-11eb-8b86-12bb97331649.png在(4.3)(4.4)式中的b1bd8a18-9fbb-11eb-8b86-12bb97331649.png、b1b47130-9fbb-11eb-8b86-12bb97331649.png、b1cfaaf4-9fbb-11eb-8b86-12bb97331649.png、b1dfe27a-9fbb-11eb-8b86-12bb97331649.png以及f(i,j)的意義與(4.1)(4.2)中相同。

4.1.5 多特征值提取

通過(4.1)-(4.4)可以算出該點的局部灰度最大值(lmgl)、局部對比度均值反差(lcmd)、局部變化量(lv)、局部平均梯度強度(lags)4個特征值,進而形成該點的特征向量。

b2735a96-9fbb-11eb-8b86-12bb97331649.png

圖七4個特征值

4.2 弱小目標(biāo)特征融合

上面介紹了4個特征,在弱小目標(biāo)的檢測時可以選擇的特征有很多種,這涉及到檢測的速度要求、硬件要求等問題。假設(shè)(i,k)為原始目標(biāo)的像素點,那么可以提取局部灰度最大值、局部對比度均值反差、局部變化量、局部平均梯度強度四個特征,通過式(4.1)-(4.4)就可以算出該點的4個特征值,進而形成該點的特征向量,統(tǒng)計所有的特征向量就可以得到平均特征向量。通過特征向量與平均向量間的算術(shù)運算來實現(xiàn)特征的融合,融合的方法定義如下:

b286c612-9fbb-11eb-8b86-12bb97331649.png(4.5)

其中,b29073b0-9fbb-11eb-8b86-12bb97331649.png分別由(4.1)-(4.4)可計算得到,b29f6dc0-9fbb-11eb-8b86-12bb97331649.png為特征向量的第i行的均值,計算方法如下:

b2a6b10c-9fbb-11eb-8b86-12bb97331649.png

5 .自適應(yīng)目標(biāo)分割

在通過4個特征提取過程以及特征融合步驟得到的紅外弱小目特征圖中,需要檢測的目標(biāo)區(qū)域的灰度值已經(jīng)遠遠比背景區(qū)域的灰度值大很多。所以采用閾值分割的方法就能將弱小目標(biāo)檢測出來。其表達式如下所示:

255,F(xiàn)>T

b2b1270e-9fbb-11eb-8b86-12bb97331649.png=b2bac688-9fbb-11eb-8b86-12bb97331649.png? ? ? 0,? ? ? ?其他

其中,b2c5a3e6-9fbb-11eb-8b86-12bb97331649.png代表所得圖中的方差,b2d3b97c-9fbb-11eb-8b86-12bb97331649.png代表所得圖中的均值。

6.紅外弱小目標(biāo)檢測

經(jīng)過上述對紅外圖像微小目標(biāo)的4個特征提取,再進行自適應(yīng)加權(quán)融合,最后通過簡單的閾值分割的方法就能紅外圖像中的弱小目標(biāo)檢測出來。

b2dfa192-9fbb-11eb-8b86-12bb97331649.png

圖八結(jié)果分析

為了驗證這個程序的通用性,又選取了拍攝的另外兩張圖片進行實驗,結(jié)果顯示本程序可適用于多幅圖片進行紅外圖像弱小目標(biāo)檢測。

b2ef79b4-9fbb-11eb-8b86-12bb97331649.png

圖九結(jié)果分析

b30dfbaa-9fbb-11eb-8b86-12bb97331649.png

圖十結(jié)果分析

通過上面圖七—圖九可以驗證本文提出的方法可以檢測出紅外圖像中的弱小目標(biāo),而且本文通過提取紅外弱小目標(biāo)圖像中4個特征值進行自適應(yīng)加權(quán)融合方法不受圖像中紋理分布的限制,可以提高檢測的準確性,應(yīng)用范圍廣泛.

7.總結(jié)

本文使用圖像處理技術(shù)以MATLAB為工具成功實現(xiàn)了對紅外弱小目標(biāo)圖像的檢測,具有一定的實用價值。運用圖像處理技術(shù)對紅外弱小目標(biāo)圖像進行處理,主要步驟包括圖像預(yù)處理過程,弱小目標(biāo)特征提取及特征值的自適應(yīng)加權(quán)融合,最后通過閾值分割等一系列的步驟完成了對紅外圖像中弱小目標(biāo)的檢測。

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4738

    瀏覽量

    96692
  • 目標(biāo)檢測
    +關(guān)注

    關(guān)注

    0

    文章

    230

    瀏覽量

    16313
  • 數(shù)字圖像處理
    +關(guān)注

    關(guān)注

    7

    文章

    103

    瀏覽量

    19603

原文標(biāo)題:基于數(shù)字圖像處理的紅外弱小目標(biāo)檢測

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    使用aicube進行目標(biāo)檢測識別數(shù)字項目的時候,在評估環(huán)節(jié)卡住了,怎么解決?

    使用aicube進行目標(biāo)檢測識別數(shù)字項目的時候,前面一切正常 但是在評估環(huán)節(jié)卡住了,一直顯示正在測試,但是完全沒有測試結(jié)果, 在部署完模型后在k230上運行也沒有任何識別結(jié)果 期待結(jié)果和實際結(jié)果
    發(fā)表于 08-13 06:45

    基于LockAI視覺識別模塊:C++目標(biāo)檢測

    檢測是計算機視覺領(lǐng)域中的一個關(guān)鍵任務(wù),它不僅需要識別圖像中存在哪些對象,還需要定位這些對象的位置。具體來說,目標(biāo)檢測算法會輸出每個檢測到的對
    發(fā)表于 06-06 14:43

    工業(yè)相機圖像采集卡:技術(shù)剖析、應(yīng)用場景與未來發(fā)展

    工業(yè)相機圖像采集卡,作為連接工業(yè)相機與計算機系統(tǒng)的橋梁,在機器視覺領(lǐng)域扮演著至關(guān)重要的角色。它將工業(yè)相機采集的模擬或數(shù)字圖像信號轉(zhuǎn)換為計算機能夠處理數(shù)字圖像數(shù)據(jù),并通過特定的數(shù)據(jù)傳輸
    的頭像 發(fā)表于 05-28 13:49 ?412次閱讀
    工業(yè)相機<b class='flag-5'>圖像</b>采集卡:技術(shù)剖析、應(yīng)用場景與未來發(fā)展

    軒轅智駕紅外目標(biāo)檢測算法在汽車領(lǐng)域的應(yīng)用

    在 AI 技術(shù)蓬勃發(fā)展的當(dāng)下,目標(biāo)檢測算法取得了重大突破,其中紅外目標(biāo)檢測算法更是在汽車行業(yè)掀起了波瀾壯闊的變革,從根本上重塑著汽車的安全性
    的頭像 發(fā)表于 03-27 15:55 ?607次閱讀

    慧視圖像處理板+VizSDK 為你拓展豐富的應(yīng)用場景

    。VizvisionSoftSDK包含了一系列為圖像采集、圖像處理、圖像編解碼、圖像輸出、目標(biāo)
    的頭像 發(fā)表于 03-04 17:45 ?630次閱讀
    慧視<b class='flag-5'>圖像</b><b class='flag-5'>處理</b>板+VizSDK   為你拓展豐富的應(yīng)用場景

    AR0820 CMOS數(shù)字圖像傳感器數(shù)據(jù)手冊

    電子發(fā)燒友網(wǎng)站提供《AR0820 CMOS數(shù)字圖像傳感器數(shù)據(jù)手冊.pdf》資料免費下載
    發(fā)表于 03-04 15:03 ?1次下載

    紅外感應(yīng)技術(shù)的工作原理

    檢測和識別。 紅外感應(yīng)器的原理 紅外感應(yīng)器作為紅外感應(yīng)技術(shù)的關(guān)鍵組件,通過檢測周圍環(huán)境中的紅外
    發(fā)表于 02-17 18:26

    廣和通推出多功能AI紅外相機解決方案

    和通自主研發(fā)的目標(biāo)檢測算法,針對野外偏遠地區(qū)目標(biāo)檢測面臨的極端光線條件、復(fù)雜環(huán)境背景、目標(biāo)尺寸過小及遮擋等挑戰(zhàn),提供了高效解決方案。廣和通的
    的頭像 發(fā)表于 01-15 17:51 ?1210次閱讀

    廣和通推出多功能AI紅外相機解決方案,賦能多領(lǐng)域AI發(fā)展

    檢測 該解決方案內(nèi)置廣和通目標(biāo)檢測算法,可高效解決野外偏遠地區(qū)目標(biāo)檢測存在的極端光線、環(huán)境背景復(fù)雜、
    的頭像 發(fā)表于 01-15 15:36 ?525次閱讀
    廣和通推出多功能AI<b class='flag-5'>紅外</b>相機解決方案,賦能多領(lǐng)域AI發(fā)展

    采用華為云 Flexus 云服務(wù)器 X 實例部署 YOLOv3 算法完成目標(biāo)檢測

    YOLOv3 在圖像識別和目標(biāo)檢測領(lǐng)域展現(xiàn)出了卓越的性能。為了滿足日益增長的數(shù)據(jù)處理需求,本項目利用華為云最新推出的 Flexus 云服務(wù)器 X 實例的強大計算能力,部署 YOLOv
    的頭像 發(fā)表于 01-02 12:00 ?848次閱讀
    采用華為云 Flexus 云服務(wù)器 X 實例部署 YOLOv3 算法完成<b class='flag-5'>目標(biāo)</b><b class='flag-5'>檢測</b>

    【「具身智能機器人系統(tǒng)」閱讀體驗】+兩本互為支持的書

    最近在閱讀《具身智能機器人系統(tǒng)》這本書的同時,還讀了 《計算機視覺之PyTorch數(shù)字圖像處理》一書,這兩本書完全可以視為是互為依托的姊妹篇?!队嬎銠C視覺之PyTorch數(shù)字圖像處理
    發(fā)表于 01-01 15:50

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測模型

    ,目標(biāo)物體周圍復(fù)雜的背景信息可能會干擾分類結(jié)果,使得分類器難以專注于真正重要的區(qū)域。 在深入探討了圖像分類任務(wù)及其面臨的挑戰(zhàn)之后,我們現(xiàn)在將目光轉(zhuǎn)向一個更為復(fù)雜的計算機視覺問題——目標(biāo)檢測
    發(fā)表于 12-19 14:33

    卡爾曼濾波在圖像處理中的應(yīng)用實例 如何調(diào)優(yōu)卡爾曼濾波參數(shù)

    卡爾曼濾波在圖像處理中的應(yīng)用實例 卡爾曼濾波在圖像處理中主要應(yīng)用于目標(biāo)跟蹤、噪聲消除和圖像恢復(fù)等
    的頭像 發(fā)表于 12-16 09:11 ?2325次閱讀

    圖像采集卡的保養(yǎng)和維護

    圖像采集卡是計算機和數(shù)字圖像處理系統(tǒng)中不可或缺的組件,它將外部視頻信號轉(zhuǎn)換為計算機可以理解和處理的格式。隨著數(shù)字化進程的加速,越來越多的行業(yè)
    的頭像 發(fā)表于 11-21 13:05 ?829次閱讀
    <b class='flag-5'>圖像</b>采集卡的保養(yǎng)和維護

    旺泓推出小體積封裝的全新數(shù)字紅外接近檢測模塊-WH4535V

    數(shù)字紅外接近檢測模塊?是一種利用紅外光進行物體接近檢測的設(shè)備,主要用于檢測物體是否在傳感器附近。
    的頭像 發(fā)表于 10-31 10:10 ?1025次閱讀
    旺泓推出小體積封裝的全新<b class='flag-5'>數(shù)字</b><b class='flag-5'>紅外</b>接近<b class='flag-5'>檢測</b>模塊-WH4535V