chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

浙大團隊研發(fā)基于單目視頻的三維場景重建框架NeuralRecon

hl5C_deeptechch ? 來源:DeepTech深科技 ? 作者:DeepTech深科技 ? 2021-05-11 10:37 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

最近,iPadiPhone 上的 LiDAR 有了新玩法,Apple Clips 應(yīng)用程序中更新了基于三維重建的 AR 空間特效。通過 Clips 3.1 的 AR 空間功能,用戶只需用帶有 LiDAR 傳感器的 iPad Pro 或 iPhone Pro 在房間中進行掃描和重建,就能為拍攝的視頻中添加絢麗的 AR 效果。

比如跟著 AR 投射出來的燈光跳舞;

再比如用 Star Walk 2 的 AR 功能,足不出戶在房間屋頂上觀看星座。

不過要實現(xiàn)上述視頻中的效果,需要 iPad 和 iPhone 高端型號上配備的 LiDAR 深度傳感器,而使用浙江大學(xué)-商湯三維視覺聯(lián)合實驗室所提出的方法,希望能讓普通手機的單目攝像頭也可實現(xiàn)上述效果。

實驗室成員周曉巍接受了我們的采訪。他是國內(nèi)計算機視覺領(lǐng)域青年學(xué)者、也是浙江大學(xué)計算機輔助設(shè)計與圖形學(xué)國家重點實驗室的“百人計劃” 研究員和博士生導(dǎo)師。幾年前,在結(jié)束美國賓夕法尼亞大學(xué) GRASP 機器人實驗室的博士后研究后,回到母校任教。他告訴 DeepTech:“目前我們跟商湯、華為都有非常緊密的合作,通過這種產(chǎn)學(xué)研的結(jié)合,我們的研究成果既有對學(xué)術(shù)前沿的探索,又能根據(jù)實際需求去攻克一些技術(shù)瓶頸。與此同時,國內(nèi)的 3D 視覺領(lǐng)域還處于新興發(fā)展階段,也需要我們回來一起把這個方向給發(fā)展壯大起來,不斷縮短與國際領(lǐng)先水平之間的差距。”

周曉巍所在的團隊提出了一種基于單目視頻的三維場景重建框架 NeuralRecon。在實時 (25 FPS) 的速度下,使用該方法可高質(zhì)量地重建三維場景。對比結(jié)果顯示,在 ScanNet、7-Scenes 等數(shù)據(jù)集上,NeuralRecon 的速度和精度均大幅領(lǐng)先以往方法。該工作將發(fā)表于今年的計算機視覺頂級會議 CVPR,并錄用為口頭報告。

據(jù)其表示,NeuralRecon 提出了用神經(jīng)網(wǎng)絡(luò)、直接回歸基于 TSDF 表示的局部三維表面,并能使用基于 GRU 的 TSDF 融合模塊,來融合歷史局部表面的特征。這樣設(shè)計的好處是,網(wǎng)絡(luò)不僅能直接學(xué)習(xí)到三維表面的局部光滑性先驗并借此實現(xiàn)準確且一致的重建,還可以減少以往方法中重復(fù)冗余的計算量,在保持質(zhì)量的前提下實現(xiàn)實時的重建。據(jù)該團隊所知,這是首個基于深度學(xué)習(xí)方法、并能實時重建稠密且一致三維表面的系統(tǒng)。

問題和挑戰(zhàn):基于圖像的實時場景的三維重建依然任重道遠

一直以來,稠密場景重建都是三維視覺的核心問題,在增強現(xiàn)實(AR)等應(yīng)用中,扮演著重要角色。在 AR 應(yīng)用中,要想實現(xiàn)真實、沉浸式的虛實融合體驗,就需要正確處理真實場景和虛擬的AR物體之間的遮擋關(guān)系,并對陰影等效果做出正確的渲染,如此才能實現(xiàn)合理的虛擬內(nèi)容放置、以及它和與真實場景的交互。概括來說,要想實現(xiàn)這些效果,都得對場景進行實時且精確的三維重建。

三維重建需要依賴精確的六自由度相機位姿估計。最近幾年,視覺慣性 SLAM 逐漸成熟,且已得到大范圍的落地應(yīng)用。ARKit 和 ARCore 等 AR 框架的出現(xiàn),讓多數(shù)智能手機都能準確跟蹤其自身六自由度的姿態(tài)。

然而,基于圖像的實時場景的三維重建依然任重道遠。目前常用的三維重建方案如 KinectFusion、BundleFusion 等,非常依賴深度傳感器提供的深度測量。但是,由于深度傳感器價格昂貴、功耗也比較高,因此其普及程度依然較低,通常只有少數(shù)高端型號的移動設(shè)備才舍得配備。因此,使用單目多視角圖像去實現(xiàn)實時三維重建,具有非常大的應(yīng)用前景。在不增加傳感器的前提下,它可直接用在現(xiàn)有智能設(shè)備中。

而在基于多視角圖像的三維重建方法中,基于深度圖融合的方法非常流行??墒?,這種方法存在兩個問題:

第一,其中有大量重復(fù)計算,從相鄰幀之間,可以看到相鄰區(qū)域中有大面積的重合,同一區(qū)域的深度則會被計算多次,這會帶來計算量上的冗余;第二,即便相鄰兩幀能看到的區(qū)域有較大重合,每一幀深度圖的計算卻都得重新開始,而非基于之前相鄰幀的深度預(yù)測結(jié)果。

如下圖所示,這會導(dǎo)致計算出來的相鄰兩幀的深度圖不一致,重建的結(jié)果也因此常會非常分散,甚至?xí)a(chǎn)生分層。

5f90f53a-b178-11eb-bf61-12bb97331649.png

圖 | 基于深度圖融合方法的重建效果

NeuralRecon:新型三維場景重建框架

為解決上述痛點,該團隊提出這一新型三維場景重建框架 NeuralRecon,下圖展示了它的算法流程。這是一個輕量級的實時端到端系統(tǒng),可直接從已知相機位姿的多視角圖像中,重建基于稀疏 TSDF 表示的三維場景幾何信息。

NeuralRecon 主要有如下兩個步驟,第一步是關(guān)鍵幀的選擇。

關(guān)鍵幀選擇的目的,是為了在提供足夠運動視差的同時,還能保持多視角的共視關(guān)系,因此所選關(guān)鍵幀之間的距離,不能太近也不能太遠。具體來說, 假如一個新傳入的幀和上一個關(guān)鍵幀的相對平移大于 t [max],并且相對旋轉(zhuǎn)角度大于 R [max],那么就可選擇該幀作為關(guān)鍵幀。而具備 N 個關(guān)鍵幀的窗口,可被定義為一個片段。

第二步是聯(lián)合片段重建和融合,其中涉及三個分步驟。

第一個分步驟是圖片特征提取和反投影,這里指的是某個視頻片段中的 N 張圖片,最初會通過一個 CNN 網(wǎng)絡(luò)來提取多個分辨率下的圖像深度特征。而圖片特征會反投影到三維空間中,得到三維特征體。

第二個分步驟是從粗到細的三維場景重建。采取從粗到細的方式,分階段地預(yù)測并細化場景的幾何信息。在每個階段中,稀疏三維卷積神經(jīng)網(wǎng)絡(luò)會被用來處理三維特征體,最終通過一個多層感知機 (MLP),獲悉占有分數(shù) (Occupancy score) 和 TSDF 值。

其中,占有分數(shù)代表著三維特征體中體素在 TSDF 截斷距離之內(nèi)的概率。在每個階段的最后,占有分數(shù)小于閾值的體素,都會被定為空、并會被除掉。而在稀疏化之后,稀疏三維特征體會被上采樣。下圖是稀疏 TSDF 表示的可視化。

圖 | 稀疏 TSDF 表示示意圖

第三個分步驟是基于 GRU 的融合,這一步的目的,在于讓片段的重建之間得以保持一致,希望當前片段的重建可建立在歷史片段重建結(jié)果的基礎(chǔ)上。

具體來說,該方法提出了一個基于 GRU 的聯(lián)合重建與融合模塊。在每個階段,三維特征體都會首先通過一個三維稀疏卷積,并進行三維幾何特征提取。然后,三維幾何特征會被輸入進 GRU 聯(lián)合重建與融合模塊。該模塊會將三維幾何特征與在歷史片段重建中獲得的隱變量進行融合,并通過一個全局感知機回歸 TSDF 和占有分數(shù)。

直觀地說,這里的 GRU 作為一種基于學(xué)習(xí)的選擇性注意機制,可取代傳統(tǒng) TSDF 融合中的線性操作。在后續(xù)的步驟中,因為GRU 進行了聯(lián)合重建與融合的操作,所以會直接將回歸的 TSDF 替換對應(yīng)區(qū)域的全局 TSDF,最終的重建結(jié)果可以從更新后的全局 TSDF 中通過 Marching Cubes 算法獲得。

兩大優(yōu)勢:重建結(jié)果具有一致性、重建過程用時更短

根據(jù)實驗結(jié)果,作者們做出了可視效果的對比圖。

對比可知,相比較傳統(tǒng)的基于深度圖的方法,NeuralRecon 主要有兩方面優(yōu)勢:

其一,重建結(jié)果具有一致性;其二,重建過程用時更短。

作者們在 ScanNet 數(shù)據(jù)集上,將本次方法和當前最好的方法做定量對比。對比發(fā)現(xiàn),本次方法在 F-score 上和速度上,都能超過此前方法,并能做到實時且精確的估計。

與此前最快的方法 MVDepthNet 比較,本次方法不僅速度略有領(lǐng)先,F(xiàn)-score 也從 0.329 提到了 0.562。相比此前精度最高的方法 COLMAP,本次方法在精度稍勝一籌的情況下,處理每個關(guān)鍵幀所需時間也從 2076ms 降至 30ms。

結(jié)語:NeuralRecon 為基于深度學(xué)習(xí)的三維感知系統(tǒng)打開新的可能性

概括來說,NeuralRecon 的核心思想,在于對每個視頻片段的可視區(qū)域進行增量式的聯(lián)合重建和聯(lián)合融合。這個設(shè)計讓 NeuralRecon 能實時輸出精確、且具有一致性的三維表面。

展望未來,使用 NeuralRecon 重建的稀疏 TSDF 表示能直接用于三維語義分割、三維目標檢測和可微渲染等下游任務(wù)。借助與下游任務(wù)的端到端聯(lián)合訓(xùn)練,NeuralRecon 可為基于深度學(xué)習(xí)的三維感知系統(tǒng)提供出新的可能性。

原文標題:浙大團隊研發(fā)新型三維重建框架NeuralRecon,是首個基于深度學(xué)習(xí)的實時單目三維場景重建系統(tǒng) | 專訪

文章出處:【微信公眾號:DeepTech深科技】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • Ar
    Ar
    +關(guān)注

    關(guān)注

    25

    文章

    5268

    瀏覽量

    175890
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5594

    瀏覽量

    124161

原文標題:浙大團隊研發(fā)新型三維重建框架NeuralRecon,是首個基于深度學(xué)習(xí)的實時單目三維場景重建系統(tǒng) | 專訪

文章出處:【微信號:deeptechchina,微信公眾號:deeptechchina】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    昊衡科技 多芯光纖三維形狀傳感系統(tǒng),精準感知!

    對于空間形態(tài)感知要求極高的微創(chuàng)手術(shù)領(lǐng)域而言,如何精準、實時地監(jiān)測柔性結(jié)構(gòu)的三維形變,一直是技術(shù)落地過程中的關(guān)鍵痛點。昊衡科技基于自主研發(fā)的光頻域反射(OFDR)技術(shù)與多芯光纖傳感方案,推出動態(tài)分布式
    的頭像 發(fā)表于 01-14 17:56 ?143次閱讀
    昊衡科技 多芯光纖<b class='flag-5'>三維</b>形狀傳感系統(tǒng),精準感知!

    一文讀懂 | 三維視覺領(lǐng)域國家級制造業(yè)單項冠軍——先臨三維的品牌布局

    先臨三維科技股份有限公司成立于2004年,是三維視覺領(lǐng)域國家級制造業(yè)單項冠軍、國家專精特新“小巨人”企業(yè)。公司專注于高精度三維視覺軟、硬件的研發(fā)和應(yīng)用,致力于成為具有全球影響力的
    的頭像 發(fā)表于 11-11 14:55 ?560次閱讀
    一文讀懂 | <b class='flag-5'>三維</b>視覺領(lǐng)域國家級制造業(yè)單項冠軍——先臨<b class='flag-5'>三維</b>的品牌布局

    從“重建”到“可用”:aiSim3DGS方案如何閉環(huán)自動駕駛仿真場景?

    3DGaussianSplatting(3DGS)憑借高效渲染與逼真場景還原能力,逐漸成為三維重建與仿真領(lǐng)域的焦點。然而,實際應(yīng)用中,如何將多源異構(gòu)數(shù)據(jù)高效轉(zhuǎn)化為可用的3DGS場景,如
    的頭像 發(fā)表于 10-24 17:33 ?28次閱讀
    從“<b class='flag-5'>重建</b>”到“可用”:aiSim3DGS方案如何閉環(huán)自動駕駛仿真<b class='flag-5'>場景</b>?

    機器視覺三維成像技術(shù)簡介(一)

    本文討論了機器視覺三維成像技術(shù),涵蓋了各種成像技術(shù)的原理、特點、優(yōu)缺點及應(yīng)用場景等內(nèi)容。關(guān)鍵要點包括: 1. 三維成像技術(shù)分類 2. 飛行時間法(ToF) 3. 結(jié)構(gòu)光 4. 激光
    的頭像 發(fā)表于 10-20 14:04 ?507次閱讀
    機器視覺<b class='flag-5'>三維</b>成像技術(shù)簡介(一)

    一種基于多次觀測融合的可交互三維高斯場景重建框架

    在計算機視覺和機器人領(lǐng)域,如何完整、真實地重建一個可交互的三維場景,一直是一個難題。傳統(tǒng)方法往往依賴復(fù)雜的多階段流程,比如先做分割,再進行背景補全或修復(fù),或者需要對每個物體進行密集掃描。這些方式不僅成本高、容易出錯,而且很難擴展
    的頭像 發(fā)表于 09-29 11:12 ?597次閱讀
    一種基于多次觀測融合的可交互<b class='flag-5'>三維</b>高斯<b class='flag-5'>場景</b><b class='flag-5'>重建</b><b class='flag-5'>框架</b>

    構(gòu)建適用于三維集成系統(tǒng)的互連線長分布模型

    三維集成電路設(shè)計中,TSV技術(shù)通過垂直互連顯著優(yōu)化了互連線長分布特性?;趥愄囟傻慕?jīng)典分析框架,可構(gòu)建適用于三維集成系統(tǒng)的互連線長分布模型。
    的頭像 發(fā)表于 08-21 10:41 ?985次閱讀
    構(gòu)建適用于<b class='flag-5'>三維</b>集成系統(tǒng)的互連線長分布模型

    請幫幫我:AutoCAD三維顯示問題,和人正常視角相背

    AutoCAD三維顯示問題,和人正常視角相背 AutoCAD三維顯示問題,和人正常視角相背
    發(fā)表于 08-14 09:50

    解鎖水紋,精準溯源!凱米斯科技創(chuàng)新研發(fā)全光譜+三維熒光技術(shù)

    CHEMINS在環(huán)境監(jiān)測領(lǐng)域,水質(zhì)污染溯源長期面臨“發(fā)現(xiàn)滯后、定位模糊”的痛點。凱米斯科技以全光譜多參數(shù)傳感器為底座,研發(fā)搭載三維熒光光譜技術(shù)(水質(zhì)指紋)方案,猶如為水體裝上“DNA檢測儀”,通過
    的頭像 發(fā)表于 07-04 17:11 ?998次閱讀
    解鎖水紋,精準溯源!凱米斯科技創(chuàng)新<b class='flag-5'>研發(fā)</b>全光譜+<b class='flag-5'>三維</b>熒光技術(shù)

    航天宏圖全棧式3DGS實景三維重建系統(tǒng)解決方案

    “實景三維中國”作為國家推進數(shù)字中國建設(shè)、提升空間地理信息服務(wù)能力的重要戰(zhàn)略性工程,正在深度融入低空經(jīng)濟、智能交通、智慧城市、數(shù)字文旅和應(yīng)急指揮等關(guān)鍵領(lǐng)域。三維重建是實現(xiàn)真實世界“實景三維”數(shù)字化
    的頭像 發(fā)表于 06-27 09:28 ?1409次閱讀
    航天宏圖全棧式3DGS實景<b class='flag-5'>三維重建</b>系統(tǒng)解決方案

    激光三維掃描技術(shù):無噴粉條件下高反光表面三維重建的光學(xué)原理與應(yīng)用

    高反光表面的三維重建是工業(yè)檢測、文化遺產(chǎn)保護等領(lǐng)域的關(guān)鍵技術(shù)瓶頸。傳統(tǒng)激光掃描依賴噴粉增強漫反射,但會對精密器件或文物造成不可逆損傷。本文通過融合結(jié)構(gòu)光調(diào)制、偏振分析及多視角協(xié)同技術(shù),構(gòu)建無噴粉測量
    的頭像 發(fā)表于 06-25 10:19 ?785次閱讀

    站閃電定位儀和三維閃電定位儀的精度對比如何

    電子發(fā)燒友網(wǎng)站提供《站閃電定位儀和三維閃電定位儀的精度對比如何.docx》資料免費下載
    發(fā)表于 06-24 15:26 ?0次下載

    VirtualLab:光學(xué)系統(tǒng)的三維可視化

    摘要 為了對光學(xué)系統(tǒng)的性質(zhì)有一個基本的了解,對其組件的可視化和光傳播的提示是非常有幫助的。為此,VirtualLab Fusion提供了一個工具來顯示光學(xué)系統(tǒng)的三維視圖。這些工具可以進一步用于檢查
    發(fā)表于 05-30 08:45

    數(shù)字孿生 × 爆炸動畫 × 三維拆解

    三維場景中實現(xiàn)模型零件爆炸效果是一種常見且非常實用的視覺技術(shù),廣泛應(yīng)用于產(chǎn)品設(shè)計演示、機械運動模擬、建筑可視化等多個領(lǐng)域。
    的頭像 發(fā)表于 05-19 15:11 ?598次閱讀
    數(shù)字孿生 × 爆炸動畫 × <b class='flag-5'>三維</b>拆解

    南方測繪推出實景三維中國整體解決方案

    新型基礎(chǔ)測繪與實景三維中國建設(shè)持續(xù)推進,南方測繪深度聚焦,基于自主研發(fā)的SmartGIS平臺,打造以地理實體數(shù)據(jù)為核心的“生產(chǎn)、處理、質(zhì)檢、管理、可視化分析”實景三維系列產(chǎn)品,提供全流程、按需定制的實景
    的頭像 發(fā)表于 03-26 16:44 ?1172次閱讀

    使用DLP LightCrafter4500投影結(jié)構(gòu)光進行三維重建遇到的疑問求解

    使用DLP LightCrafter4500 投影結(jié)構(gòu)光進行三維重建,遇到以下問題: (1)投影自己的圖片,如何使投影出的圖片和原圖片的亮度一致。它是可以設(shè)定LED的亮度,我投影出來的圖片亮度很
    發(fā)表于 03-03 06:29