chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

你們知道深度學(xué)習(xí)有哪四個(gè)學(xué)習(xí)階段嗎

新機(jī)器視覺 ? 來源:Coggle數(shù)據(jù)科學(xué) ? 作者:Coggle數(shù)據(jù)科學(xué) ? 2021-06-10 15:27 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

機(jī)器學(xué)習(xí)領(lǐng)域是巨大的,為了學(xué)習(xí)不迷路,可以從以下列表幫助學(xué)習(xí)。它概述深度學(xué)習(xí)的一些學(xué)習(xí)細(xì)節(jié)。

階段1:入門級(jí)入門級(jí)能夠掌握以下技能:

能夠處理小型數(shù)據(jù)集

理解經(jīng)典機(jī)器學(xué)習(xí)技術(shù)的關(guān)鍵概念

理解經(jīng)典網(wǎng)絡(luò)DNN、CNN和RNN

數(shù)據(jù)處理

在入門級(jí)使用的數(shù)據(jù)集很小,可以放入主內(nèi)存中。只需幾行代碼即可應(yīng)用此類操作。在此階段數(shù)據(jù)包括Audio、Image、Time-series和Text等類型。

經(jīng)典機(jī)器學(xué)習(xí)

在深入研究深度學(xué)習(xí)之前,學(xué)習(xí)基本機(jī)器學(xué)習(xí)技術(shù)是一個(gè)不錯(cuò)的選擇,其包括回歸、聚類、SVM和樹模型。

網(wǎng)絡(luò)

掌握常見的網(wǎng)絡(luò)層,以及相應(yīng)的神經(jīng)網(wǎng)絡(luò);GAN、AE、VAE、DNN、CNN、RNN 等等。在入門階段,可以優(yōu)先掌握DNN、CNN和RNN。

理論

沒有神經(jīng)網(wǎng)絡(luò)就沒有深度學(xué)習(xí),沒有(數(shù)學(xué))理論就沒有神經(jīng)網(wǎng)絡(luò)??梢酝ㄟ^了解數(shù)學(xué)符號(hào)來開始學(xué)習(xí),可以從矩陣、線性代數(shù)和概率論開始你的學(xué)習(xí)。

階段2:進(jìn)階水平進(jìn)階和入門級(jí)之間沒有真正的分界,進(jìn)階水平能夠處理更大的數(shù)據(jù)集,能夠使用高級(jí)網(wǎng)絡(luò)處理自定義項(xiàng)模型:

處理更大的數(shù)據(jù)集

能夠自定義模型完成任務(wù)

網(wǎng)絡(luò)模型精度變得更好

數(shù)據(jù)處理

能夠處理幾GB的數(shù)據(jù)集,需要自定義數(shù)據(jù)擴(kuò)增方法和數(shù)據(jù)處理函數(shù)。

自己完成任務(wù)

能夠根據(jù)具體任務(wù)完成代碼的開發(fā),而不是參考MNIST的教程完成編碼。

自定義網(wǎng)絡(luò)

處理自定義項(xiàng)目時(shí),如何處理數(shù)據(jù)數(shù)據(jù)?如何定義自己的網(wǎng)絡(luò)層?

模型訓(xùn)練

掌握遷移學(xué)習(xí)的思路,學(xué)會(huì)使用預(yù)訓(xùn)練權(quán)重完成新任務(wù)。并掌握凍結(jié)部分網(wǎng)絡(luò)層的方法。

深度學(xué)習(xí)理論

掌握深度學(xué)習(xí)模型的正向傳播和反向傳播,特別是鏈?zhǔn)角髮?dǎo)法則。掌握激活函數(shù)和目標(biāo)函數(shù)的作用,能夠選擇合適的激活函數(shù)和目標(biāo)函數(shù)。

階段3:熟練水平與進(jìn)階相比你需要掌握更加的數(shù)據(jù)集處理方法,并掌握加速模型訓(xùn)練的方法:

大規(guī)模數(shù)據(jù)的處理和存儲(chǔ)

網(wǎng)絡(luò)模型的調(diào)參

無監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)

數(shù)據(jù)處理

需要掌握幾百GB數(shù)據(jù)集的處理,學(xué)會(huì)Linux的操作。此階段可能接觸到多模態(tài)任務(wù)。

無監(jiān)督項(xiàng)目

開始嘗試無監(jiān)督網(wǎng)絡(luò)模型的搭建,如自編碼器和GAN模型,能夠掌握模型原理。

模型訓(xùn)練

掌握模型調(diào)參的方法和常見的日志和可視化工具,如TensorBoard的使用。掌握學(xué)習(xí)率的調(diào)節(jié)方法,如余弦退火。掌握多機(jī)和混合精度訓(xùn)練。

階段4:專家級(jí)掌握前沿的學(xué)術(shù)模型的發(fā)展,知道自己的興趣是什么,并能提出新的模型:

學(xué)會(huì)使用JAX或DALI處理數(shù)據(jù)

熟悉圖神經(jīng)網(wǎng)絡(luò)和Transformer模型

本文在原文基礎(chǔ)上進(jìn)行了精簡,原文鏈接:https://towardsdatascience.com/a-guide-to-the-field-of-deep-learning-9bb9b21dae2

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4829

    瀏覽量

    106803
  • GaN
    GaN
    +關(guān)注

    關(guān)注

    21

    文章

    2330

    瀏覽量

    79248
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8541

    瀏覽量

    136236
  • rnn
    rnn
    +關(guān)注

    關(guān)注

    0

    文章

    92

    瀏覽量

    7300

原文標(biāo)題:深度學(xué)習(xí)的四個(gè)學(xué)習(xí)階段!

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    分享一個(gè)嵌入式開發(fā)學(xué)習(xí)路線

    如果你想要學(xué)習(xí)嵌入式開發(fā),我建議按照這個(gè)學(xué)習(xí)路線準(zhǔn)備: 1. 基礎(chǔ)鋪墊期(1-2個(gè)月) 理解嵌入式系統(tǒng)的“硬件基礎(chǔ)”和“編程入門”,能看懂簡單電路,寫出基礎(chǔ)C語言代碼。這一階段
    發(fā)表于 12-04 11:01

    如何深度學(xué)習(xí)機(jī)器視覺的應(yīng)用場景

    深度學(xué)習(xí)視覺應(yīng)用場景大全 工業(yè)制造領(lǐng)域 復(fù)雜缺陷檢測:處理傳統(tǒng)算法難以描述的非標(biāo)準(zhǔn)化缺陷模式 非標(biāo)產(chǎn)品分類:對形狀、顏色、紋理多變的產(chǎn)品進(jìn)行智能分類 外觀質(zhì)量評(píng)估:基于學(xué)習(xí)的外觀質(zhì)量標(biāo)準(zhǔn)判定 精密
    的頭像 發(fā)表于 11-27 10:19 ?56次閱讀

    分享一個(gè)嵌入式學(xué)習(xí)階段規(guī)劃

    給大家分享一個(gè)嵌入式學(xué)習(xí)階段規(guī)劃: (一)基礎(chǔ)筑牢階段(約 23 天) 核心目標(biāo):打牢 C 語言、數(shù)據(jù)結(jié)構(gòu)、電路基礎(chǔ)C 語言開發(fā):學(xué)變量 / 指針 / 結(jié)構(gòu)體等核心語法,用 Dev-
    發(fā)表于 09-12 15:11

    如何在機(jī)器視覺中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    圖 1:基于深度學(xué)習(xí)的目標(biāo)檢測可定位已訓(xùn)練的目標(biāo)類別,并通過矩形框(邊界框)對其進(jìn)行標(biāo)識(shí)。 在討論人工智能(AI)或深度學(xué)習(xí)時(shí),經(jīng)常會(huì)出現(xiàn)“神經(jīng)網(wǎng)絡(luò)”、“黑箱”、“標(biāo)注”等術(shù)語。這些概
    的頭像 發(fā)表于 09-10 17:38 ?698次閱讀
    如何在機(jī)器視覺中部署<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>神經(jīng)網(wǎng)絡(luò)

    深度學(xué)習(xí)對工業(yè)物聯(lián)網(wǎng)哪些幫助

    、實(shí)施路徑三個(gè)維度展開分析: 一、深度學(xué)習(xí)如何突破工業(yè)物聯(lián)網(wǎng)的技術(shù)瓶頸? 1. 非結(jié)構(gòu)化數(shù)據(jù)處理:解鎖“沉睡數(shù)據(jù)”價(jià)值 傳統(tǒng)困境 :工業(yè)物聯(lián)網(wǎng)中70%以上的數(shù)據(jù)為非結(jié)構(gòu)化數(shù)據(jù)(如設(shè)備振動(dòng)波形、紅外圖像、日志文本),傳統(tǒng)方法難以
    的頭像 發(fā)表于 08-20 14:56 ?762次閱讀

    自動(dòng)駕駛中Transformer大模型會(huì)取代深度學(xué)習(xí)嗎?

    [首發(fā)于智駕最前沿微信公眾號(hào)]近年來,隨著ChatGPT、Claude、文心一言等大語言模型在生成文本、對話交互等領(lǐng)域的驚艷表現(xiàn),“Transformer架構(gòu)是否正在取代傳統(tǒng)深度學(xué)習(xí)”這一話題一直被
    的頭像 發(fā)表于 08-13 09:15 ?3922次閱讀
    自動(dòng)駕駛中Transformer大模型會(huì)取代<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>嗎?

    嵌入式AI技術(shù)之深度學(xué)習(xí):數(shù)據(jù)樣本預(yù)處理過程中使用合適的特征變換對深度學(xué)習(xí)的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)機(jī)器學(xué)習(xí),網(wǎng)絡(luò)的每個(gè)層都將對輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成深度學(xué)習(xí)的框架,可以深度理解數(shù)據(jù)中所要表示的規(guī)律。從原理上看,使用
    的頭像 發(fā)表于 04-02 18:21 ?1285次閱讀

    用樹莓派搞深度學(xué)習(xí)?TensorFlow啟動(dòng)!

    介紹本頁面將指導(dǎo)您在搭載64位Bullseye操作系統(tǒng)的RaspberryPi4上安裝TensorFlow。TensorFlow是一個(gè)專為深度學(xué)習(xí)開發(fā)的大型軟件庫,它消耗大量資源。您可以在
    的頭像 發(fā)表于 03-25 09:33 ?968次閱讀
    用樹莓派搞<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>?TensorFlow啟動(dòng)!

    如何排除深度學(xué)習(xí)工作臺(tái)上量化OpenVINO?的特定層?

    無法確定如何排除要在深度學(xué)習(xí)工作臺(tái)上量化OpenVINO?特定層
    發(fā)表于 03-06 07:31

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    ,并廣泛介紹了深度學(xué)習(xí)在兩個(gè)主要軍事應(yīng)用領(lǐng)域的應(yīng)用:情報(bào)行動(dòng)和自主平臺(tái)。最后,討論了相關(guān)的威脅、機(jī)遇、技術(shù)和實(shí)際困難。主要發(fā)現(xiàn)是,人工智能技術(shù)并非無所不能,需要謹(jǐn)慎應(yīng)用,同時(shí)考慮到其局限性、網(wǎng)絡(luò)安全威脅以及
    的頭像 發(fā)表于 02-14 11:15 ?823次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度學(xué)習(xí)的定義與發(fā)展
    的頭像 發(fā)表于 02-12 15:15 ?1351次閱讀

    模數(shù)轉(zhuǎn)換電路的四個(gè)過程

    模數(shù)轉(zhuǎn)換(Analog-to-Digital Conversion,簡稱ADC)是將模擬信號(hào)轉(zhuǎn)換為數(shù)字信號(hào)的關(guān)鍵過程,廣泛應(yīng)用于通信、數(shù)據(jù)采集、信號(hào)處理等領(lǐng)域。模數(shù)轉(zhuǎn)換電路的設(shè)計(jì)與實(shí)現(xiàn)涉及多個(gè)關(guān)鍵步驟,通常可以分為四個(gè)主要過程:采樣、保持、量化和編碼。本文將詳細(xì)分析這四個(gè)
    的頭像 發(fā)表于 02-03 16:12 ?2370次閱讀

    AI自動(dòng)化生產(chǎn):深度學(xué)習(xí)在質(zhì)量控制中的應(yīng)用

    生產(chǎn)效率、保證產(chǎn)品質(zhì)量方面展現(xiàn)出非凡的能力。阿丘科技「AI干貨補(bǔ)給站」推出《AI自動(dòng)化生產(chǎn):深度學(xué)習(xí)在質(zhì)量控制中的應(yīng)用》文章,探討深度學(xué)習(xí)在自動(dòng)化生產(chǎn)中的
    的頭像 發(fā)表于 01-17 16:35 ?1215次閱讀
    AI自動(dòng)化生產(chǎn):<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>在質(zhì)量控制中的應(yīng)用

    請問AD9852四個(gè)輸出口什么差別?

    AD9852四個(gè)輸出口什么差別?是不是IOUT1是余弦輸出,IOUT2是DAC控制輸出,需要設(shè)置DAC控制寄存器?
    發(fā)表于 01-16 06:59

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開發(fā)生物學(xué)數(shù)據(jù)的機(jī)器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個(gè)強(qiáng)大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度
    的頭像 發(fā)表于 12-30 09:16 ?1982次閱讀
    傳統(tǒng)機(jī)器<b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)