chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

計算機視覺中如何調(diào)用OpenCV庫

新機器視覺 ? 來源:博客園 ? 作者:謝玉林 ? 2021-09-08 10:26 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

學(xué)習(xí)計算機視覺最重要的能力應(yīng)該就是編程了,為了幫助小伙伴盡快入門計算機視覺,小白準備了【走進OpenCV】系列,主要幫助小伙伴了解如何調(diào)用OpenCV庫,涉及到的知識點會做簡單講解。

圖像初始化操作

#include《opencv2opencv.hpp》 #include《opencv2highguihighgui.hpp》 using namespace std; using namespace cv; int main(int argc, char** argv) { //這些方式都是自己擁有獨立的內(nèi)存空間 Mat img1(2, 2, CV_8UC3, Scalar(0, 0, 255)); cout 《《 img1 《《 endl; int sz[3] = { 2,2,2 }; Mat img2(3, sz, CV_8UC1, Scalar(0, 0, 0)); //cout 《《 img2 《《 endl; Mat img5; img5.create(4, 4, CV_8UC3);

cout 《《 img5 《《 endl; Mat img6 = Mat::zeros(4, 4, CV_8UC3); cout 《《 img6 《《 endl; Mat img7 = img6.clone(); cout 《《 img7 《《 endl; Mat img8; img6.copyTo(img8); cout 《《 img8 《《 endl; //下面都是淺拷貝,指針指向同一個實例 Mat img9 = img8; Mat img10(img8); waitKey(0); return 0; }

圖像二值化操作

兩種方法,全局固定閾值二值化和局部自適應(yīng)閾值二值化全局固定閾值很容易理解,就是對整幅圖像都是用一個統(tǒng)一的閾值來進行二值化;局部自適應(yīng)閾值則是根據(jù)像素的鄰域塊的像素值分布來確定該像素位置上的二值化閾值。

#include《opencv2opencv.hpp》 #include《opencv2highguihighgui.hpp》 using namespace std; using namespace cv; int main(int argc, char** argv) { Mat image = imread(“l(fā)ol1.jpg”, CV_LOAD_IMAGE_GRAYSCALE); //注意了,必須是載入灰度圖 if (image.empty()) { cout 《《 “read image failure” 《《 endl; return -1; } // 全局二值化 int th = 100; Mat global; threshold(image, global, th, 255, CV_THRESH_BINARY_INV); // 局部二值化 int blockSize = 25; int constValue = 10; Mat local; adaptiveThreshold(image, local, 255, CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY_INV, blockSize, constValue); imshow(“全局二值化”, global); imshow(“局部二值化”, local); waitKey(0); return 0; }

腐蝕操作

#include 《iostream》 #include 《opencv2opencv.hpp》 using namespace cv; using namespace std; int main() { Mat SrcPic = imread(“l(fā)ena.jpg”); imshow(“Src Pic”, SrcPic); Mat element = getStructuringElement(MORPH_RECT, Size(15, 15)); //getStructuringElement函數(shù)返回的是指定形狀和尺寸的結(jié)構(gòu)元素 Mat DstPic; erode(SrcPic, DstPic, element); //腐蝕操作 imshow(“腐蝕效果圖”, DstPic); waitKey(); return 0; }

運行效果

均值濾波實現(xiàn)圖像模糊

#include 《iostream》 #include 《opencv2opencv.hpp》 using namespace cv; using namespace std; int main() { Mat SrcPic = imread(“l(fā)ena.jpg”); imshow(“Src Pic”, SrcPic); Mat DstPic; blur(SrcPic, DstPic, Size(7, 7)); imshow(“均值模糊效果圖”, DstPic); waitKey(); return 0; }

canny邊緣檢測

思路:將原始圖像轉(zhuǎn)化為灰度圖,用blur函數(shù)進行圖像模糊以降噪,然后用canny函數(shù)進行邊緣檢測。

#include 《iostream》 #include 《opencv2opencv.hpp》 using namespace cv; using namespace std; int main() { Mat SrcPic = imread(“l(fā)ena.jpg”); imshow(“Src Pic”, SrcPic); Mat DstPic, edge, grayImage; //創(chuàng)建與src同類型和同大小的矩陣 DstPic.create(SrcPic.size(), SrcPic.type()); //將原始圖轉(zhuǎn)化為灰度圖 cvtColor(SrcPic, grayImage, COLOR_BGR2GRAY); //先使用3*3內(nèi)核來降噪 blur(grayImage, edge, Size(3, 3)); //運行canny算子 Canny(edge, edge, 3, 9, 3); imshow(“邊緣提取效果”, edge); waitKey(); return 0; }

轉(zhuǎn)為灰度圖

#include《opencv2opencv.hpp》 #include《opencv2highguihighgui.hpp》 using namespace std; using namespace cv; int main() { Mat img = imread(“l(fā)ol1.jpg”); Mat dstImg; cvtColor(img, dstImg,COLOR_BGR2GRAY);//從宏名字就可以知道,是彩色圖轉(zhuǎn)換到灰度圖 imshow(“灰度圖”, dstImg); waitKey(0); }

灰度圖

訪問圖片中像素

#include《opencv2opencv.hpp》 #include《opencv2highguihighgui.hpp》 using namespace std; using namespace cv; //訪問每個像素,我喜歡使用指針的方式 int main() { Mat img = imread(“l(fā)ol1.jpg”); for (int i = 0; i 《 img.rows; i++) { uchar* data = img.ptr《uchar》(i); //獲取第i行地址 for (int j = 0; j 《 img.cols; j++) { printf(“%d ”,data[j]); } } waitKey(0); }

直方圖均衡化

#include《opencv2opencv.hpp》 #include《opencv2highguihighgui.hpp》 using namespace std; using namespace cv; //直方圖均衡化 int main() { Mat img = imread(“l(fā)ol3.jpg”); imshow(“原始圖”, img); Mat dst; cvtColor(img, img, CV_RGB2GRAY); imshow(“灰度圖”, img); equalizeHist(img, dst); imshow(“直方圖均衡化”, dst); waitKey(0); }

顯然均衡化后的圖片對比度變高了,變得更加明亮!

常用的數(shù)據(jù)結(jié)構(gòu)

#include《opencv2opencv.hpp》 #include《opencv2highguihighgui.hpp》 using namespace std; using namespace cv; //常見數(shù)據(jù)結(jié)構(gòu)使用方法總結(jié) int main() { //Mat的用法 Mat m1(2, 2, CV_8UC3, Scalar(0, 0, 255)); //其中的宏的解釋:CV_[位數(shù)][帶符號與否][類型前綴]C[通道數(shù)] cout 《《 m1 《《 endl; //或者,利用IplImage指針來初始化,將IplImage*轉(zhuǎn)化為Mat IplImage* image = cvLoadImage(“l(fā)ena.jpg”); Mat mat = cvarrToMat(image);

//Mat轉(zhuǎn)IplImage: IplImage img = IplImage(mat); //或者 Mat m2; m2.create(4, 5, CV_8UC(2)); //點的表示:Point Point p; p.x = 1; //x坐標 p.y = 1; //y坐標 //或者 Point p2(1, 1);

//顏色的表示:Scalar(b,g,r);注意不是rgb,注意對應(yīng)關(guān)系 Scalar(1, 1, 1); //尺寸的表示:Size Size(5, 5);// 寬度和高度都是5 //矩形的表示:Rect,成員變量有x,y,width,height Rect r1(0, 0, 100, 60); Rect r2(10, 10, 100, 60); Rect r3 = r1 | r2; //兩個矩形求交集 Rect r4 = r1 & r2; //兩個矩形求并集 waitKey(0); }

結(jié)束語

由于時間和文章篇幅有限,本次總結(jié)先到這里,下次小白會為小伙伴們帶來OpenCV的濾波操作,各位小伙伴敬請期待。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機器視覺
    +關(guān)注

    關(guān)注

    163

    文章

    4717

    瀏覽量

    124950
  • OpenCV
    +關(guān)注

    關(guān)注

    33

    文章

    650

    瀏覽量

    44381

原文標題:學(xué)習(xí)Opencv不得不掌握的操作

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    使用代理式AI激活傳統(tǒng)計算機視覺系統(tǒng)的三種方法

    當(dāng)前的計算機視覺系統(tǒng)擅長于識別物理空間與流程的事件,卻難以詮釋場景細節(jié)及其意義,也無法推理后續(xù)可能發(fā)生的情況。
    的頭像 發(fā)表于 12-01 09:44 ?265次閱讀

    機器視覺雙雄YOLO 和 OpenCV 到底有啥區(qū)別?別再傻傻分不清!

    如何在深圳市鋇錸技術(shù)有限公司的AI邊緣計算產(chǎn)品結(jié)合,實現(xiàn)真正的“視覺智能”。 一、前言:為什么總有人把YOLO和OpenCV搞混? 在AI視覺
    的頭像 發(fā)表于 10-14 16:00 ?498次閱讀
    機器<b class='flag-5'>視覺</b>雙雄YOLO 和 <b class='flag-5'>OpenCV</b> 到底有啥區(qū)別?別再傻傻分不清!

    ElfBoard技術(shù)貼|如何在【RK3588】ELF 2開發(fā)板安裝openCV4以及第三方contrib

    在嵌入式應(yīng)用開發(fā)領(lǐng)域,OpenCV憑借其豐富的功能成為開發(fā)者處理計算機視覺任務(wù)的首選工具。Buildroot為開發(fā)者提供了便捷的嵌入式系統(tǒng)構(gòu)建環(huán)境,其默認集成的OpenCV版本為4.5
    的頭像 發(fā)表于 08-05 11:03 ?4280次閱讀
    ElfBoard技術(shù)貼|如何在【RK3588】ELF 2開發(fā)板<b class='flag-5'>中</b>安裝<b class='flag-5'>openCV</b>4以及第三方<b class='flag-5'>庫</b>contrib

    易控智駕榮獲計算機視覺頂會CVPR 2025認可

    近日,2025年國際計算機視覺與模式識別頂級會議(IEEE/CVF Conference on Computer Vision and Pattern Recognition,CVPR 2025)在美國田納西州納什維爾召開。
    的頭像 發(fā)表于 07-29 16:54 ?959次閱讀

    工業(yè)計算機的重要性

    工業(yè)計算機對某些行業(yè)至關(guān)重要。我們將在下面詳細解釋這些行業(yè)的工業(yè)計算機應(yīng)用。1.制造與工業(yè)自動化工業(yè)級計算機非常適合制造工廠,特別是那些想要自動化裝配過程的工廠。在這樣的環(huán)境
    的頭像 發(fā)表于 07-28 16:07 ?386次閱讀
    工業(yè)<b class='flag-5'>計算機</b>的重要性

    自動化計算機經(jīng)過加固后有什么好處?

    讓我們討論一下部署堅固的自動化計算機的一些好處。1.溫度范圍寬自動化計算機經(jīng)過工程設(shè)計,配備了支持寬溫度范圍的組件,使自動化計算解決方案能夠在各種不同的極端環(huán)境運行。自動化
    的頭像 發(fā)表于 07-21 16:44 ?414次閱讀
    自動化<b class='flag-5'>計算機</b>經(jīng)過加固后有什么好處?

    自動化計算機的功能與用途

    工業(yè)自動化是指利用自動化計算機來控制工業(yè)環(huán)境的流程、機器人和機械,以制造產(chǎn)品或其部件。工業(yè)自動化的目的是提高生產(chǎn)率、增加靈活性,并提升制造過程的質(zhì)量。工業(yè)自動化在汽車制造中體現(xiàn)得最為明顯,其中許多
    的頭像 發(fā)表于 07-15 16:32 ?512次閱讀
    自動化<b class='flag-5'>計算機</b>的功能與用途

    工業(yè)計算機與商用計算機的區(qū)別有哪些

    工業(yè)計算機是一種專為工廠和工業(yè)環(huán)境設(shè)計的計算系統(tǒng),具有高可靠性和穩(wěn)定性,能夠應(yīng)對惡劣環(huán)境下的自動化、制造和機器人操作。其特點包括無風(fēng)扇散熱技術(shù)、無電纜連接和防塵防水設(shè)計,使其在各種工業(yè)自動化場景
    的頭像 發(fā)表于 07-10 16:36 ?505次閱讀
    工業(yè)<b class='flag-5'>計算機</b>與商用<b class='flag-5'>計算機</b>的區(qū)別有哪些

    Arm KleidiCV與OpenCV集成助力移動端計算機視覺性能優(yōu)化

    等多種應(yīng)用。然而,這些計算機視覺應(yīng)用可能很難實現(xiàn)最優(yōu)化的延遲性能和處理速度,特別是在內(nèi)存大小、電池容量和處理能力有限的移動設(shè)備上難度更高。 而 Arm KleidiCV 便能在其中大顯身手。該開源
    的頭像 發(fā)表于 02-24 10:15 ?867次閱讀

    AR和VR計算機視覺

    ):計算機視覺引領(lǐng)混合現(xiàn)實體驗增強現(xiàn)實(AR)和虛擬現(xiàn)實(VR)正在徹底改變我們與外部世界的互動方式。即便是在引人入勝的沉浸式
    的頭像 發(fā)表于 02-08 14:29 ?2105次閱讀
    AR和VR<b class='flag-5'>中</b>的<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>

    云端超級計算機使用教程

    云端超級計算機是一種基于云計算的高性能計算服務(wù),它將大量計算資源和存儲資源集中在一起,通過網(wǎng)絡(luò)向用戶提供按需的計算服務(wù)。下面,AI部落小編為
    的頭像 發(fā)表于 12-17 10:19 ?909次閱讀

    AI模型部署邊緣設(shè)備的奇妙之旅:如何在邊緣端部署OpenCV

    1 簡介 Opencv(Open Source Computer Vision Library)是一個基于開源發(fā)行的跨平臺計算機視覺,它實現(xiàn)了圖像處理和
    發(fā)表于 12-14 09:31

    AI模型部署邊緣設(shè)備的奇妙之旅:如何在邊緣端部署OpenCV

    1簡介Opencv(OpenSourceComputerVisionLibrary)是一個基于開源發(fā)行的跨平臺計算機視覺,它實現(xiàn)了圖像處理和計算機
    的頭像 發(fā)表于 12-14 09:10 ?1245次閱讀
    AI模型部署邊緣設(shè)備的奇妙之旅:如何在邊緣端部署<b class='flag-5'>OpenCV</b>

    【AI實戰(zhàn)項目】基于OpenCV的“顏色識別項目”完整操作過程

    OpenCV是一個廣受歡迎且極為流行的計算機視覺,它因其強大的功能、靈活性和開源特性而在開發(fā)者和研究者備受青睞。學(xué)習(xí)
    的頭像 發(fā)表于 12-09 16:42 ?1887次閱讀
    【AI實戰(zhàn)項目】基于<b class='flag-5'>OpenCV</b>的“顏色識別項目”完整操作過程

    RK3568 + OpenCV 會碰撞出什么火花?案例詳解:2-1 基于OpenCV的畫線實驗

    一、實驗?zāi)康?本節(jié)視頻的目的是了解OpenCV的作用并通過OpenCV實現(xiàn)畫線。 二、實驗原理 OpenCV 開放源代碼計算機視覺
    發(fā)表于 12-03 14:09