chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

NVIDIA技術(shù)助力線上大模型推理

NVIDIA英偉達企業(yè)解決方案 ? 來源:NVIDIA英偉達企業(yè)解決方案 ? 作者:NVIDIA英偉達 ? 2021-10-28 15:28 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

隨著騰訊微信的發(fā)展,微信搜索也成為其越來越重要的功能,這個功能可以用來搜索微信內(nèi)部的賬號、信息,以及搜索互聯(lián)網(wǎng)上的內(nèi)容。微信搜索月活躍用戶數(shù)量達到五億以上。搜索業(yè)務(wù)當(dāng)中使用了大量的神經(jīng)網(wǎng)絡(luò)模型,包括自然語言理解、匹配排序等等,這些模型的訓(xùn)練和推理都大量依賴于NVIDIA GPU,尤其在推理方面,NVIDIA GPU及相應(yīng)的解決方案都滿足了業(yè)務(wù)所需的延遲和吞吐要求。

微信搜索業(yè)務(wù)需要更高效平臺

微信搜索業(yè)務(wù)由多個子模塊構(gòu)成,包括查詢理解、匹配、搜索排序等等。由于搜索的業(yè)務(wù)特點,這些任務(wù)對線上服務(wù)的延遲和吞吐都十分敏感。然而在最近幾年,隨著算力的提升以及算法的創(chuàng)新,很多大型復(fù)雜的神經(jīng)網(wǎng)絡(luò)模型開始應(yīng)用在這些任務(wù)上,比如BERT/Transformer等模型。

這些大模型需要的計算資源和業(yè)務(wù)上的高要求對推理端的軟硬件都是很大的挑戰(zhàn),必須針對具體的硬件做極致的優(yōu)化。而且對于大模型的推理,很多技術(shù)被探索、應(yīng)用在這些場景上以便實現(xiàn)性能加速、節(jié)約資源,比如模型壓縮、剪枝、低精度計算等。這些技術(shù)可能會帶來精度下降等負面影響,限制了這些技術(shù)的廣泛應(yīng)用。因此,如何在保證精度效果以及服務(wù)吞吐延遲需求的情況下,高效地對這些模型進行推理成為了業(yè)務(wù)上的巨大挑戰(zhàn)。NVIDIA GPU以及NVIDIA TensorRT給這一場景提供了解決方案。

NVIDIA技術(shù)助力線上大模型推理

為了滿足線上服務(wù)的需求,并且盡可能地節(jié)約成本,微信搜索選擇使用NVIDIA T4 GPU以及TensorRT推理引擎來進行線上大模型的推理。

線上服務(wù)對于吞吐和延遲有很高的要求,微信搜索選擇使用NVIDIA T4 GPU以及TensorRT推理引擎來做線上推理服務(wù),利用NVIDIA基于TensorRT開源的BERT實現(xiàn),可以很方便地在FP16精度下實現(xiàn)滿足需求的線上推理功能。這個方案在線上取得了很好的效果。

在此基礎(chǔ)上,微信搜索希望進一步加快推理速度,節(jié)約計算資源,以便更好地服務(wù)用戶,節(jié)約成本。低精度推理成為了很好的選擇。NVIDIA GPU從圖靈(Turing)架構(gòu)開始就有了INT8 Tensor Core,其計算吞吐量最高可達FP16精度的2倍。同時低精度推理跟其他的優(yōu)化方法也是正交的,可以同時使用其他技術(shù)比如剪枝、蒸餾等做進一步提升。微信搜索線上大量使用NVIDIA T4 GPU,非常適合使用INT8推理。而且TensorRT對INT8推理也有良好的支持。利用TensorRT的“校準”(Calibration)功能,能夠方便地將Float精度模型轉(zhuǎn)換為INT8低精度模型,實現(xiàn)低精度推理。通過低精度推理,模型的單次推理時間大大縮短。

通過“校準”來做模型轉(zhuǎn)換已經(jīng)在很多計算機視覺模型上被驗證是十分有效的,并且其精度和推理性能都十分優(yōu)秀。然而對于像BERT一類的模型, “校準” 無法使得精度和性能都完全令人滿意。因此,騰訊搜索使用了NVIDIA開發(fā)的基于PyTorch/TensorFlow的量化工具進行基于知識蒸餾的量化感知訓(xùn)練(Quantization Aware Training)克服精度下降的問題。TensorRT對于導(dǎo)入量化感知訓(xùn)練好的模型進行INT8低精度推理有著很好的支持。導(dǎo)入這樣的模型,不僅得到了最佳性能,而且精度沒有損失,線上服務(wù)只需更換TensorRT構(gòu)建好的引擎即可,極大地簡化了部署的流程。

通過這樣的方案,微信搜索中的一些關(guān)鍵任務(wù),比如查詢理解等自然語言理解任務(wù),可以在精度沒有損失的情況下,達到2-10倍的加速效果,平均單句推理時間達到了0.1ms。任務(wù)相應(yīng)的計算資源節(jié)省了約70%。這個方案大大優(yōu)化了微信搜索業(yè)務(wù)的性能,降低了部署成本。

使用NVIDIA T4 GPU以及TensorRT推理引擎進行INT8低精度推理,極大提升了微信搜索的速度,進一步提升了用戶體驗,節(jié)約了公司成本。

微信搜索的Hui Liu、Raccoon Liu和Dick Zhu表示:“我們已經(jīng)實現(xiàn)了基于TensorRT和INT8 QAT的模型推理加速,以加速微信搜索的核心任務(wù),包括Query理解和查詢結(jié)果排序等。我們用GPU+TensorRT的解決方案突破了NLP模型復(fù)雜性的限制,BERT/Transformer可以完全集成到我們的解決方案中。此外,我們利用卓越的性能優(yōu)化方法,節(jié)省了70%的計算資源。”

責(zé)任編輯:haq

隨著騰訊微信的發(fā)展,微信搜索也成為其越來越重要的功能,這個功能可以用來搜索微信內(nèi)部的賬號、信息,以及搜索互聯(lián)網(wǎng)上的內(nèi)容。微信搜索月活躍用戶數(shù)量達到五億以上。搜索業(yè)務(wù)當(dāng)中使用了大量的神經(jīng)網(wǎng)絡(luò)模型,包括自然語言理解、匹配排序等等,這些模型的訓(xùn)練和推理都大量依賴于NVIDIA GPU,尤其在推理方面,NVIDIA GPU及相應(yīng)的解決方案都滿足了業(yè)務(wù)所需的延遲和吞吐要求。

微信搜索業(yè)務(wù)需要更高效平臺

微信搜索業(yè)務(wù)由多個子模塊構(gòu)成,包括查詢理解、匹配、搜索排序等等。由于搜索的業(yè)務(wù)特點,這些任務(wù)對線上服務(wù)的延遲和吞吐都十分敏感。然而在最近幾年,隨著算力的提升以及算法的創(chuàng)新,很多大型復(fù)雜的神經(jīng)網(wǎng)絡(luò)模型開始應(yīng)用在這些任務(wù)上,比如BERT/Transformer等模型。 這些大模型需要的計算資源和業(yè)務(wù)上的高要求對推理端的軟硬件都是很大的挑戰(zhàn),必須針對具體的硬件做極致的優(yōu)化。而且對于大模型的推理,很多技術(shù)被探索、應(yīng)用在這些場景上以便實現(xiàn)性能加速、節(jié)約資源,比如模型壓縮、剪枝、低精度計算等。這些技術(shù)可能會帶來精度下降等負面影響,限制了這些技術(shù)的廣泛應(yīng)用。因此,如何在保證精度效果以及服務(wù)吞吐延遲需求的情況下,高效地對這些模型進行推理成為了業(yè)務(wù)上的巨大挑戰(zhàn)。NVIDIA GPU以及NVIDIATensorRT給這一場景提供了解決方案。

NVIDIA技術(shù)助力線上大模型推理

為了滿足線上服務(wù)的需求,并且盡可能地節(jié)約成本,微信搜索選擇使用NVIDIA T4 GPU以及TensorRT推理引擎來進行線上大模型的推理。

線上服務(wù)對于吞吐和延遲有很高的要求,微信搜索選擇使用NVIDIA T4 GPU以及TensorRT推理引擎來做線上推理服務(wù),利用NVIDIA基于TensorRT開源的BERT實現(xiàn),可以很方便地在FP16精度下實現(xiàn)滿足需求的線上推理功能。這個方案在線上取得了很好的效果。

在此基礎(chǔ)上,微信搜索希望進一步加快推理速度,節(jié)約計算資源,以便更好地服務(wù)用戶,節(jié)約成本。低精度推理成為了很好的選擇。NVIDIA GPU從圖靈(Turing)架構(gòu)開始就有了INT8 Tensor Core,其計算吞吐量最高可達FP16精度的2倍。同時低精度推理跟其他的優(yōu)化方法也是正交的,可以同時使用其他技術(shù)比如剪枝、蒸餾等做進一步提升。微信搜索線上大量使用NVIDIA T4 GPU,非常適合使用INT8推理。而且TensorRT對INT8推理也有良好的支持。利用TensorRT的“校準”(Calibration)功能,能夠方便地將Float精度模型轉(zhuǎn)換為INT8低精度模型,實現(xiàn)低精度推理。通過低精度推理,模型的單次推理時間大大縮短。

通過“校準”來做模型轉(zhuǎn)換已經(jīng)在很多計算機視覺模型上被驗證是十分有效的,并且其精度和推理性能都十分優(yōu)秀。然而對于像BERT一類的模型, “校準” 無法使得精度和性能都完全令人滿意。因此,騰訊搜索使用了NVIDIA開發(fā)的基于PyTorch/TensorFlow的量化工具進行基于知識蒸餾的量化感知訓(xùn)練(Quantization Aware Training)克服精度下降的問題。TensorRT對于導(dǎo)入量化感知訓(xùn)練好的模型進行INT8低精度推理有著很好的支持。導(dǎo)入這樣的模型,不僅得到了最佳性能,而且精度沒有損失,線上服務(wù)只需更換TensorRT構(gòu)建好的引擎即可,極大地簡化了部署的流程。

通過這樣的方案,微信搜索中的一些關(guān)鍵任務(wù),比如查詢理解等自然語言理解任務(wù),可以在精度沒有損失的情況下,達到2-10倍的加速效果,平均單句推理時間達到了0.1ms。任務(wù)相應(yīng)的計算資源節(jié)省了約70%。這個方案大大優(yōu)化了微信搜索業(yè)務(wù)的性能,降低了部署成本。 使用NVIDIA T4 GPU以及TensorRT推理引擎進行INT8低精度推理,極大提升了微信搜索的速度,進一步提升了用戶體驗,節(jié)約了公司成本。 微信搜索的Hui Liu、Raccoon Liu和Dick Zhu表示:"我們已經(jīng)實現(xiàn)了基于TensorRT和INT8 QAT的模型推理加速,以加速微信搜索的核心任務(wù),包括Query理解和查詢結(jié)果排序等。我們用GPU+TensorRT的解決方案突破了NLP模型復(fù)雜性的限制,BERT/Transformer可以完全集成到我們的解決方案中。此外,我們利用卓越的性能優(yōu)化方法,節(jié)省了70%的計算資源。"

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4832

    瀏覽量

    107376
  • NVIDIA
    +關(guān)注

    關(guān)注

    14

    文章

    5574

    瀏覽量

    109453
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3713

    瀏覽量

    51994

原文標題:NVIDIA TensorRT助力騰訊加速微信搜索

文章出處:【微信號:NVIDIA-Enterprise,微信公眾號:NVIDIA英偉達企業(yè)解決方案】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    LLM推理模型是如何推理的?

    這篇文章《(How)DoReasoningModelsReason?》對當(dāng)前大型推理模型(LRM)進行了深刻的剖析,超越了表面的性能宣傳,直指其技術(shù)本質(zhì)和核心局限。以下是基于原文的詳細技術(shù)原理、關(guān)鍵
    的頭像 發(fā)表于 01-19 15:33 ?322次閱讀
    LLM<b class='flag-5'>推理模型</b>是如何<b class='flag-5'>推理</b>的?

    NVIDIA 推出 Alpamayo 系列開源 AI 模型與工具,加速安全可靠的推理型輔助駕駛汽車開發(fā)

    新聞?wù)?: l NVIDIA 率先發(fā)布為應(yīng)對輔助駕駛長尾場景挑戰(zhàn)而設(shè)計的開源視覺-語言-動作推理模型(Reasoning VLA);NVIDIA Alpamayo 系列還包含賦能輔助駕駛汽車開發(fā)
    的頭像 發(fā)表于 01-06 09:40 ?312次閱讀
    <b class='flag-5'>NVIDIA</b> 推出 Alpamayo 系列開源 AI <b class='flag-5'>模型</b>與工具,加速安全可靠的<b class='flag-5'>推理</b>型輔助駕駛汽車開發(fā)

    NVIDIA推動面向數(shù)字與物理AI的開源模型發(fā)展

    NVIDIA 發(fā)布一系列涵蓋語音、安全與輔助駕駛領(lǐng)域的全新 AI 工具,其中包括面向移動出行領(lǐng)域的行業(yè)級開源視覺-語言-動作推理模型(Reasoning VLA) NVIDIA DRIVE Alpamayo-R1。此外,一項新的
    的頭像 發(fā)表于 12-13 09:50 ?1257次閱讀

    NVIDIA TensorRT LLM 1.0推理框架正式上線

    TensorRT LLM 作為 NVIDIA 為大規(guī)模 LLM 推理打造的推理框架,核心目標是突破 NVIDIA 平臺上的推理性能瓶頸。為實
    的頭像 發(fā)表于 10-21 11:04 ?1051次閱讀

    什么是AI模型推理能力

    NVIDIA 的數(shù)據(jù)工廠團隊為 NVIDIA Cosmos Reason 等 AI 模型奠定了基礎(chǔ),該模型近日在 Hugging Face 的物理
    的頭像 發(fā)表于 09-23 15:19 ?1159次閱讀

    使用NVIDIA NVLink Fusion技術(shù)提升AI推理性能

    本文詳細闡述了 NVIDIA NVLink Fusion 如何借助高效可擴展的 NVIDIA NVLink scale-up 架構(gòu)技術(shù),滿足日益復(fù)雜的 AI 模型不斷增長的需求。
    的頭像 發(fā)表于 09-23 14:45 ?819次閱讀
    使用<b class='flag-5'>NVIDIA</b> NVLink Fusion<b class='flag-5'>技術(shù)</b>提升AI<b class='flag-5'>推理</b>性能

    NVIDIA Nemotron Nano 2推理模型發(fā)布

    NVIDIA 正式推出準確、高效的混合 Mamba-Transformer 推理模型系列 NVIDIA Nemotron Nano 2。
    的頭像 發(fā)表于 08-27 12:45 ?1687次閱讀
    <b class='flag-5'>NVIDIA</b> Nemotron Nano 2<b class='flag-5'>推理模型</b>發(fā)布

    NVIDIA從云到邊緣加速OpenAI gpt-oss模型部署,實現(xiàn)150萬TPS推理

    ? 自 2016 年推出 NVIDIA DGX 以來,NVIDIA 與 OpenAI 便開始共同推動 AI 技術(shù)的邊界。此次 OpenAI gpt-oss-20b 和 gpt-oss-120b
    的頭像 發(fā)表于 08-15 20:34 ?2199次閱讀
    <b class='flag-5'>NVIDIA</b>從云到邊緣加速OpenAI gpt-oss<b class='flag-5'>模型</b>部署,實現(xiàn)150萬TPS<b class='flag-5'>推理</b>

    模型推理顯存和計算量估計方法研究

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)大模型在各個領(lǐng)域得到了廣泛應(yīng)用。然而,大模型推理過程對顯存和計算資源的需求較高,給實際應(yīng)用帶來了挑戰(zhàn)。為了解決這一問題,本文將探討大
    發(fā)表于 07-03 19:43

    英偉達GTC25亮點:NVIDIA Dynamo開源庫加速并擴展AI推理模型

    DeepSeek-R1 上的吞吐量提高了 30 倍 NVIDIA 發(fā)布了開源推理軟件 NVIDIA Dynamo,旨在以高效率、低成本加速并擴展 AI 工廠中的 AI 推理模型。 作
    的頭像 發(fā)表于 03-20 15:03 ?1176次閱讀

    NVIDIA發(fā)布全球首個開源人形機器人基礎(chǔ)模型Isaac GR00T N1

    NVIDIA 宣布推出一系列全新技術(shù),助力人形機器人開發(fā)。其中包括全球首個開源且完全可定制的基礎(chǔ)模型NVIDIA Isaac GR00T N
    的頭像 發(fā)表于 03-20 14:34 ?1506次閱讀

    Oracle 與 NVIDIA 合作助力企業(yè)加速代理式 AI 推理

    ——Oracle 和 NVIDIA 今日宣布,NVIDIA 加速計算和推理軟件與 Oracle 的 AI 基礎(chǔ)設(shè)施以及生成式 AI 服務(wù)首次實現(xiàn)集成,以幫助全球企業(yè)組織加速創(chuàng)建代理式 AI 應(yīng)用。 ? 此次
    發(fā)表于 03-19 15:24 ?524次閱讀
    Oracle 與 <b class='flag-5'>NVIDIA</b> 合作<b class='flag-5'>助力</b>企業(yè)加速代理式 AI <b class='flag-5'>推理</b>

    NVIDIA 推出開放推理 AI 模型系列,助力開發(fā)者和企業(yè)構(gòu)建代理式 AI 平臺

    月 18 日 —— ?NVIDIA 今日發(fā)布具有推理功能的開源 Llama Nemotron 模型系列,旨在為開發(fā)者和企業(yè)提供業(yè)務(wù)就緒型基礎(chǔ),助力構(gòu)建能夠獨立工作或以團隊形式完成復(fù)雜
    發(fā)表于 03-19 09:31 ?364次閱讀
    <b class='flag-5'>NVIDIA</b> 推出開放<b class='flag-5'>推理</b> AI <b class='flag-5'>模型</b>系列,<b class='flag-5'>助力</b>開發(fā)者和企業(yè)構(gòu)建代理式 AI 平臺

    Qwen大模型助力開發(fā)低成本AI推理方案

    阿里巴巴的開源Qwen2.5模型近期在AI領(lǐng)域引發(fā)了廣泛關(guān)注。這一大模型的推出,為斯坦福大學(xué)與伯克利大學(xué)的研究人員提供了強大的技術(shù)支持,使他們能夠成功開發(fā)出低成本的AI推理模型。 據(jù)悉
    的頭像 發(fā)表于 02-12 09:19 ?1073次閱讀

    使用NVIDIA推理平臺提高AI推理性能

    NVIDIA推理平臺提高了 AI 推理性能,為零售、電信等行業(yè)節(jié)省了數(shù)百萬美元。
    的頭像 發(fā)表于 02-08 09:59 ?1607次閱讀
    使用<b class='flag-5'>NVIDIA</b><b class='flag-5'>推理</b>平臺提高AI<b class='flag-5'>推理</b>性能