chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

使用遷移學(xué)習(xí)定制人工智能深度學(xué)習(xí)模型

星星科技指導(dǎo)員 ? 來源:NVIDIA ? 作者:About Tanay Varshney, ? 2022-04-01 09:11 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

從頭開始創(chuàng)建一個新的人工智能深度學(xué)習(xí)模型是一個非常耗費(fèi)時間和資源的過程。解決這個問題的一個常見方法是采用遷移學(xué)習(xí)。為了使這一過程更加簡單,NVIDIA TAO Toolkit,它可以將工程時間框架從 80 周縮短到 8 周。 TAO 工具包支持計算機(jī)視覺和對話 AI ( ASR 和 NLP )用例。

在本文中,我們將介紹以下主題:

安裝 TAO 工具包并訪問預(yù)訓(xùn)練模型

微調(diào)預(yù)訓(xùn)練語音轉(zhuǎn)錄模型

將微調(diào)模型導(dǎo)出到 NVIDIA Riva

跟隨 download the Jupyter notebook。

安裝 TAO 工具包并下載預(yù)訓(xùn)練模型

在安裝 TAO 工具包之前,請確保您的系統(tǒng)上安裝了以下組件:

Python [3 。 6 。 9]

docker ce 》 19 。 03 。 5

nvidia-DOCKR2 3 。 4 。 0-1

有關(guān)安裝 nvidia docker 和 docker 的更多信息,請參閱Prerequisites。您可以使用 pip 安裝 TAO 工具包。我們建議使用virtual environment以避免版本沖突。

安裝完成后,下一步是獲得一些經(jīng)過預(yù)訓(xùn)練的模型。 NVIDIA 提供了許多人工智能或機(jī)器學(xué)習(xí)模型,不僅在對話人工智能領(lǐng)域,而且在 NGC 或 NVIDIA GPU 云上的廣泛領(lǐng)域。 NGC 目錄是一套精心策劃的 GPU 優(yōu)化軟件,用于 AI 、 HPC 和可視化。

要從 NGC 下載資源,請使用NGC API key登錄注冊表。您可以免費(fèi)創(chuàng)建和使用一個。

圖 1 。獲取 NGCAPI 密鑰

CitriNet是由 NVIDIA 構(gòu)建的最先進(jìn)的自動語音識別( ASR )模型,可用于生成語音轉(zhuǎn)錄。您可以從Speech to Text English Citrinet型號卡下載此型號。

為了提供流暢的體驗(yàn),工具包在后臺下載并運(yùn)行 Docker 容器,使用前面提到的規(guī)范文件。所有細(xì)節(jié)都隱藏在 TAO 啟動器中。您可以通過定義 JSON 文件~/.tao_mounts.json來指定裝載 Docker 容器的首選位置。您可以在Jupyter notebook中找到裝載文件。

這樣,您就安裝了 TAO 工具包,下載了一個經(jīng)過預(yù)訓(xùn)練的 ASR 模型,并指定了 TAO 工具包啟動器的安裝點(diǎn)。在下一節(jié)中,我們將討論如何使用 TAO 工具包在您選擇的數(shù)據(jù)集上微調(diào)此模型。

微調(diào)模型

使用 TAO 工具包微調(diào)模型包括三個步驟:

下載規(guī)范文件。

預(yù)處理數(shù)據(jù)集。

使用超參數(shù)進(jìn)行微調(diào)。

圖 3 顯示了微調(diào)模型所需的步驟。

圖 2 。 TAO 工具包工作流

步驟 1 :下載規(guī)范文件

NVIDIA TAO Toolkit 是一種低代碼或無代碼的解決方案,通過規(guī)范文件簡化模型的培訓(xùn)或微調(diào)。通過這些文件,您可以自定義特定于模型的參數(shù)、培訓(xùn)師參數(shù)、優(yōu)化器和所用數(shù)據(jù)集的參數(shù)??梢詫⑦@些規(guī)范文件下載到先前裝載的文件夾:

以下是 TAO 工具包附帶的 YAML 文件。有關(guān)更多信息,請參閱Downloading Sample Spec Files。

create_tokenizer.yaml

dataset_convert_an4.yaml

dataset_convert_en.yaml

dataset_convert_ru.yaml

evaluate.yaml

export.yaml

finetune.yaml

infer_onnx.yaml

infer.yaml

train_citrinet_256.yaml

train_citrinet_bpe.yaml

這些規(guī)范文件可供自定義和使用。從預(yù)處理和模型評估到推理和導(dǎo)出模型,都有相應(yīng)的功能。這使您能夠完成開發(fā)或定制模型的過程,而無需構(gòu)建復(fù)雜的代碼庫。下載等級庫文件后,現(xiàn)在可以繼續(xù)預(yù)處理數(shù)據(jù)。

步驟 2 :預(yù)處理數(shù)據(jù)集

在本演練中,您將使用CMU’s AN4 Dataset,這是一個小型普查數(shù)據(jù)集,其中包含地址、數(shù)字和其他個人信息的記錄。這與客戶支持對話中對話的初始步驟所需的轉(zhuǎn)錄類型類似。具有類似內(nèi)容的較大自定義數(shù)據(jù)集可用于實(shí)際應(yīng)用程序。

您可以直接下載和解壓縮 AN4 數(shù)據(jù)集,或使用以下命令:

TAO 工具包培訓(xùn)和微調(diào)模塊期望數(shù)據(jù)以特定格式呈現(xiàn)??梢允褂?dataset _ convert 命令完成此預(yù)處理。我們將 AN4 和 Mozilla 的通用語音數(shù)據(jù)集的規(guī)范文件與 TAO 啟動器一起打包。您可以在步驟 1 中定義的目錄中找到這些規(guī)范文件。

這些清單文件(圖 3 )包含在后面的步驟中使用的以下信息:

音頻文件的路徑

每個文件的持續(xù)時間

每個文件的文字內(nèi)容

圖 3 。已處理清單文件的結(jié)構(gòu)

此命令將音頻文件轉(zhuǎn)換為 WAV 文件,并生成訓(xùn)練和測試清單文件。

在大多數(shù)情況下,您都會進(jìn)行預(yù)處理,但 CitriNet 模型是一個特例。它需要以子詞標(biāo)記化的形式進(jìn)行進(jìn)一步處理,為文本創(chuàng)建子詞詞匯表。這與 Jasper 或 QuartzNet 不同,因?yàn)樵谒鼈兊那闆r下,詞匯表中只有單個字符被視為元素。在 CitriNet 中,子字可以是一個或多個字符。這可以使用以下命令完成:

到目前為止,您已經(jīng)建立了一個工具,為諸如遷移學(xué)習(xí)之類的復(fù)雜問題提供低代碼或無代碼解決方案。您已經(jīng)下載了一個預(yù)訓(xùn)練的模型,將音頻文件處理為必要的格式,并執(zhí)行了標(biāo)記化。您使用的命令不到 10 個?,F(xiàn)在,所有必要的細(xì)節(jié)都已散列出來,您可以繼續(xù)微調(diào)模型。

步驟 3 :使用超參數(shù)進(jìn)行微調(diào)

正如在前面的步驟中所做的那樣,您正在與規(guī)范文件交互。有關(guān)更多信息,請參閱Creating an Experiment Spec File。如果要調(diào)整 FFT 窗口大小的大小,可以指定幾乎所有內(nèi)容,從特定于訓(xùn)練的參數(shù)(如優(yōu)化器)到特定于數(shù)據(jù)集的參數(shù),再到模型配置本身。

是否要更改學(xué)習(xí)速率和調(diào)度程序,或者在詞匯表中添加新字符?無需打開代碼庫并對其進(jìn)行掃描以進(jìn)行更改。所有這些定制都很容易獲得,并可在整個團(tuán)隊(duì)中共享。這減少了在嘗試新想法和分享結(jié)果以及模型配置方面的摩擦,從而提高了準(zhǔn)確性。

以下是如何微調(diào)數(shù)據(jù)集:

最后,要繼續(xù),請根據(jù)需要修改規(guī)范文件并運(yùn)行以下命令。此命令使用先前下載的數(shù)據(jù)集微調(diào)下載的模型。有關(guān)更多信息,請參閱Fine-Tuning the Model。

在對模型進(jìn)行微調(diào)或培訓(xùn)后,自然會評估模型并評估是否需要進(jìn)一步微調(diào)。為此, NVIDIA 為evaluate your model和run inference提供了功能。

將微調(diào)模型導(dǎo)出到 Riva

在生產(chǎn)環(huán)境中部署模型會帶來一系列挑戰(zhàn)。為此,您可以使用NVIDIA Riva,一種 GPU 加速 AI 語音 SDK 來開發(fā)實(shí)時轉(zhuǎn)錄和虛擬助理等應(yīng)用程序。

Riva 使用其他 NVIDIA 產(chǎn)品:

NVIDIA Triton Inference Server用于簡化大規(guī)模生產(chǎn)中模型的部署。

NVIDIA TensorRT用于通過優(yōu)化 NVIDIA GPU s 的模型來加速模型并提供更好的推理性能。

如果您對使用本演練中微調(diào)的模型感興趣,可以使用以下命令將其導(dǎo)出到 Riva 。

在下一篇文章中,我們將介紹如何安裝 NVIDIA Riva 在生產(chǎn)環(huán)境中部署這些模型,以及如何使用NGC Catalog中的眾多模型之一。

關(guān)于作者

About Tanay Varshney

Tanay Varshney 是 NVIDIA 的一名深入學(xué)習(xí)的技術(shù)營銷工程師,負(fù)責(zé)廣泛的 DL 軟件產(chǎn)品。他擁有紐約大學(xué)計算機(jī)科學(xué)碩士學(xué)位,專注于計算機(jī)視覺、數(shù)據(jù)可視化和城市分析的橫斷面。

About Sirisha Rella

Sirisha Rella 是 NVIDIA 的技術(shù)產(chǎn)品營銷經(jīng)理,專注于計算機(jī)視覺、語音和基于語言的深度學(xué)習(xí)應(yīng)用。 Sirisha 獲得了密蘇里大學(xué)堪薩斯城分校的計算機(jī)科學(xué)碩士學(xué)位,是國家科學(xué)基金會大學(xué)習(xí)中心的研究生助理。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • NVIDIA
    +關(guān)注

    關(guān)注

    14

    文章

    5442

    瀏覽量

    108494
  • 人工智能
    +關(guān)注

    關(guān)注

    1812

    文章

    49521

    瀏覽量

    258923
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    利用超微型 Neuton ML 模型解鎖 SoC 邊緣人工智能

    的框架小 10 倍,速度也快 10 倍,甚至可以在最先進(jìn)的邊緣設(shè)備上進(jìn)行人工智能處理。在這篇博文中,我們將介紹這對開發(fā)人員意味著什么,以及使用 Neuton 模型如何改進(jìn)您的開發(fā)和終端
    發(fā)表于 08-31 20:54

    挖到寶了!人工智能綜合實(shí)驗(yàn)箱,高校新工科的寶藏神器

    應(yīng)用場景。從數(shù)據(jù)采集,到模型推理,都能完整且自如地參與,輕松解鎖人工智能全流程實(shí)訓(xùn),讓你深度體驗(yàn)AI技術(shù)的魅力 。 四、九門課程全覆蓋,滿足多元學(xué)習(xí)需求 對于高校教學(xué)或者技術(shù)
    發(fā)表于 08-07 14:30

    挖到寶了!比鄰星人工智能綜合實(shí)驗(yàn)箱,高校新工科的寶藏神器!

    應(yīng)用場景。從數(shù)據(jù)采集,到模型推理,都能完整且自如地參與,輕松解鎖人工智能全流程實(shí)訓(xùn),讓你深度體驗(yàn)AI技術(shù)的魅力 。 四、九門課程全覆蓋,滿足多元學(xué)習(xí)需求 對于高校教學(xué)或者技術(shù)
    發(fā)表于 08-07 14:23

    超小型Neuton機(jī)器學(xué)習(xí)模型, 在任何系統(tǒng)級芯片(SoC)上解鎖邊緣人工智能應(yīng)用.

    Neuton 是一家邊緣AI 公司,致力于讓機(jī)器 學(xué)習(xí)模型更易于使用。它創(chuàng)建的模型比競爭對手的框架小10 倍,速度也快10 倍,甚至可以在最先進(jìn)的邊緣設(shè)備上進(jìn)行人工智能處理。在這篇博文
    發(fā)表于 07-31 11:38

    最新人工智能硬件培訓(xùn)AI 基礎(chǔ)入門學(xué)習(xí)課程參考2025版(大模型篇)

    人工智能模型重塑教育與社會發(fā)展的當(dāng)下,無論是探索未來職業(yè)方向,還是更新技術(shù)儲備,掌握大模型知識都已成為新時代的必修課。從職場上輔助工作的智能助手,到課堂用于學(xué)術(shù)研究的
    發(fā)表于 07-04 11:10

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢,導(dǎo)致戰(zhàn)爭形式和模式發(fā)生重大變
    的頭像 發(fā)表于 02-14 11:15 ?724次閱讀

    小白學(xué)解釋性AI:從機(jī)器學(xué)習(xí)到大模型

    科學(xué)AI需要可解釋性人工智能的崛起,尤其是深度學(xué)習(xí)的發(fā)展,在眾多領(lǐng)域帶來了令人矚目的進(jìn)步。然而,伴隨這些進(jìn)步而來的是一個關(guān)鍵問題——“黑箱”問題。許多人工智能
    的頭像 發(fā)表于 02-10 12:12 ?967次閱讀
    小白學(xué)解釋性AI:從機(jī)器<b class='flag-5'>學(xué)習(xí)</b>到大<b class='flag-5'>模型</b>

    數(shù)學(xué)專業(yè)轉(zhuǎn)人工智能方向:考研/就業(yè)前景分析及大學(xué)四年學(xué)習(xí)路徑全揭秘

    隨著AI技術(shù)的不斷進(jìn)步,專業(yè)人才的需求也日益增長。數(shù)學(xué)作為AI的基石,為機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、數(shù)據(jù)分析等提供了理論基礎(chǔ)和工具,因此越來越多的數(shù)學(xué)專業(yè)學(xué)生開始考慮在人工智能領(lǐng)域發(fā)展。本文主
    的頭像 發(fā)表于 02-07 11:14 ?1528次閱讀
    數(shù)學(xué)專業(yè)轉(zhuǎn)<b class='flag-5'>人工智能</b>方向:考研/就業(yè)前景分析及大學(xué)四年<b class='flag-5'>學(xué)習(xí)</b>路徑全揭秘

    人工智能和機(jī)器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    人工智能相關(guān)各種技術(shù)的概念介紹,以及先進(jìn)的Edge AI(邊緣人工智能)的最新發(fā)展與相關(guān)應(yīng)用。 人工智能和機(jī)器學(xué)習(xí)是現(xiàn)代科技的核心技術(shù) 人工智能
    的頭像 發(fā)表于 01-25 17:37 ?1379次閱讀
    <b class='flag-5'>人工智能</b>和機(jī)器<b class='flag-5'>學(xué)習(xí)</b>以及Edge AI的概念與應(yīng)用

    嵌入式和人工智能究竟是什么關(guān)系?

    、連接主義和深度學(xué)習(xí)等不同的階段。目前,人工智能已經(jīng)廣泛應(yīng)用于各種領(lǐng)域,如自然語言處理、計算機(jī)視覺、智能推薦等。 嵌入式系統(tǒng)和人工智能在許
    發(fā)表于 11-14 16:39

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度
    的頭像 發(fā)表于 11-14 15:17 ?2579次閱讀

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識別 圖像識別是深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?1958次閱讀

    FPGA加速深度學(xué)習(xí)模型的案例

    FPGA(現(xiàn)場可編程門陣列)加速深度學(xué)習(xí)模型是當(dāng)前硬件加速領(lǐng)域的一個熱門研究方向。以下是一些FPGA加速深度學(xué)習(xí)
    的頭像 發(fā)表于 10-25 09:22 ?1552次閱讀

    人工智能、機(jī)器學(xué)習(xí)深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?3360次閱讀
    <b class='flag-5'>人工智能</b>、機(jī)器<b class='flag-5'>學(xué)習(xí)</b>和<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    AI大模型深度學(xué)習(xí)的關(guān)系

    AI大模型深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大
    的頭像 發(fā)表于 10-23 15:25 ?3410次閱讀