chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

YOLOX目標(biāo)檢測模型的推理部署

OpenCV學(xué)堂 ? 來源:OpenCV學(xué)堂 ? 作者:gloomyfish ? 2022-04-16 23:00 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

YOLOX目標(biāo)檢測模型

曠視科技開源了內(nèi)部目標(biāo)檢測模型-YOLOX,性能與速度全面超越Y(jié)OLOv5早期版本!

fd7acd32-bc50-11ec-aa7f-dac502259ad0.png

如此神奇原因在于模型結(jié)構(gòu)的修改,下圖說明了改了什么地方:

fd89a5b4-bc50-11ec-aa7f-dac502259ad0.png

把原來的耦合頭部,通過1x1卷積解耦成兩個并行的分支,經(jīng)過一系列處理之后最終取得精度與速度雙提升。實驗對比結(jié)果如下:

fd9a396a-bc50-11ec-aa7f-dac502259ad0.png

論文與代碼模型下載地址:
https://arxiv.org/pdf/2107.08430.pdfhttps://github.com/Megvii-BaseDetection/YOLOX

ONNX格式模型轉(zhuǎn)與部署

下載YOLOX的ONNX格式模型(github上可以下載)
https://github.com/Megvii-BaseDetection/YOLOX/tree/main/demo/ONNXRuntimehttps://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.onnx

下載ONNX格式模型,打開之后如圖:

fdab5c7c-bc50-11ec-aa7f-dac502259ad0.png

輸入格式:1x3x640x640,默認(rèn)BGR,無需歸一化。輸出格式:1x8400x85
官方說明ONNX格式支持OpenVINO、ONNXRUNTIME、TensorRT三種方式,而且都提供源碼,官方提供的源碼參考如下
https://github.com/Megvii-BaseDetection/YOLOX/tree/main/demo
本人就是參考上述的代碼然后一通猛改,分別封裝成三個類,完成了統(tǒng)一接口,公用了后處理部分的代碼,基于本人筆記本的硬件資源與軟件版本:
-GPU 3050Ti-CPU i7 11代-OS:Win10 64位-OpenVINO2021.4-ONNXRUNTIME:1.7-CPU-OpenCV4.5.4-Python3.6.5-YOLOX-TensorRT8.4.x
在三個推理平臺上測試結(jié)果如下:

fdb887bc-bc50-11ec-aa7f-dac502259ad0.png

運行截圖如下:onnxruntime推理

fdc4c9d2-bc50-11ec-aa7f-dac502259ad0.png

OpenVINO推理

fde1d216-bc50-11ec-aa7f-dac502259ad0.png

TensorRT推理 - FP32

fdf9d622-bc50-11ec-aa7f-dac502259ad0.png

轉(zhuǎn)威FP16

fe1134ac-bc50-11ec-aa7f-dac502259ad0.png

TensorRT推理 - FP16

fe239098-bc50-11ec-aa7f-dac502259ad0.png

總結(jié)

之前我寫過一篇文章比較了YOLOv5最新版本在OpenVINO、ONNXRUNTIME、OpenCV DNN上的速度比較,現(xiàn)在加上本篇比較了YOLOXTensorRT、OpenVINO、ONNXRUNTIME上推理部署速度比較,得到的結(jié)論就是:
CPU上速度最快的是OpenVINOGPU上速度最快的是TensorRT
能不改代碼,同時支持CPU跟GPU推理是ONNXRUNTIMEOpenCV DNN毫無意外的速度最慢(CPU/GPU)

原文標(biāo)題:YOLOX在OpenVINO、ONNXRUNTIME、TensorRT上面推理部署與速度比較

文章出處:【微信公眾號:OpenCV學(xué)堂】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

審核編輯:湯梓紅
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3644

    瀏覽量

    51683
  • 目標(biāo)檢測
    +關(guān)注

    關(guān)注

    0

    文章

    230

    瀏覽量

    16367
  • OpenCV
    +關(guān)注

    關(guān)注

    33

    文章

    650

    瀏覽量

    44377

原文標(biāo)題:YOLOX在OpenVINO、ONNXRUNTIME、TensorRT上面推理部署與速度比較

文章出處:【微信號:CVSCHOOL,微信公眾號:OpenCV學(xué)堂】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    NVIDIA TensorRT LLM 1.0推理框架正式上線

    TensorRT LLM 作為 NVIDIA 為大規(guī)模 LLM 推理打造的推理框架,核心目標(biāo)是突破 NVIDIA 平臺上的推理性能瓶頸。為實現(xiàn)這一
    的頭像 發(fā)表于 10-21 11:04 ?712次閱讀

    什么是AI模型推理能力

    NVIDIA 的數(shù)據(jù)工廠團(tuán)隊為 NVIDIA Cosmos Reason 等 AI 模型奠定了基礎(chǔ),該模型近日在 Hugging Face 的物理推理模型排行榜中位列榜首。
    的頭像 發(fā)表于 09-23 15:19 ?792次閱讀

    使用aicube進(jìn)行目標(biāo)檢測識別數(shù)字項目的時候,在評估環(huán)節(jié)卡住了,怎么解決?

    使用aicube進(jìn)行目標(biāo)檢測識別數(shù)字項目的時候,前面一切正常 但是在評估環(huán)節(jié)卡住了,一直顯示正在測試,但是完全沒有測試結(jié)果, 在部署模型后在k230上運行也沒有任何識別結(jié)果 期
    發(fā)表于 08-13 06:45

    基于米爾瑞芯微RK3576開發(fā)板部署運行TinyMaix:超輕量級推理框架

    本文將介紹基于米爾電子MYD-LR3576開發(fā)平臺部署超輕量級推理框架方案:TinyMaix 摘自優(yōu)秀創(chuàng)作者-短笛君 TinyMaix 是面向單片機(jī)的超輕量級的神經(jīng)網(wǎng)絡(luò)推理庫,即 TinyML
    發(fā)表于 07-25 16:35

    如何在魔搭社區(qū)使用TensorRT-LLM加速優(yōu)化Qwen3系列模型推理部署

    TensorRT-LLM 作為 NVIDIA 專為 LLM 推理部署加速優(yōu)化的開源庫,可幫助開發(fā)者快速利用最新 LLM 完成應(yīng)用原型驗證與產(chǎn)品部署。
    的頭像 發(fā)表于 07-04 14:38 ?1713次閱讀

    模型推理顯存和計算量估計方法研究

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)大模型在各個領(lǐng)域得到了廣泛應(yīng)用。然而,大模型推理過程對顯存和計算資源的需求較高,給實際應(yīng)用帶來了挑戰(zhàn)。為了解決這一問題,本文將探討大模型
    發(fā)表于 07-03 19:43

    基于LockAI視覺識別模塊:C++目標(biāo)檢測

    快速部署高性能的目標(biāo)檢測應(yīng)用。 特點: 高性能:優(yōu)化了推理速度,在保持高精度的同時實現(xiàn)了快速響應(yīng)。 靈活性:支持多種預(yù)訓(xùn)練模型,可以根據(jù)具體
    發(fā)表于 06-06 14:43

    基于RK3576開發(fā)板的RKLLM大模型部署教程

    Runtime則負(fù)責(zé)加載轉(zhuǎn)換后的模型,并在Rockchip NPU上進(jìn)行推理,用戶可以通過自定義回調(diào)函數(shù)實時獲取推理結(jié)果。 開發(fā)流程分為模型轉(zhuǎn)換和板端
    的頭像 發(fā)表于 05-16 17:48 ?1903次閱讀
    基于RK3576開發(fā)板的RKLLM大<b class='flag-5'>模型</b><b class='flag-5'>部署</b>教程

    labview調(diào)用yolo目標(biāo)檢測、分割、分類、obb

    labview調(diào)用yolo目標(biāo)檢測、分割、分類、obb、pose深度學(xué)習(xí),支持CPU和GPU推理,32/64位labview均可使用。 (yolov5~yolov12)
    發(fā)表于 03-31 16:28

    【幸狐Omni3576邊緣計算套件試用體驗】RKNN 推理測試與圖像識別

    本節(jié)介紹了 RKNN 推理測試的相關(guān)流程,包括 rknn_model_zoo 模型部署、編譯及板端測試。 rknn_model_zoo rknn_model_zoo 是瑞芯微官方提供的 RKNPU 支持
    發(fā)表于 03-20 16:14

    添越智創(chuàng)基于 RK3588 開發(fā)板部署測試 DeepSeek 模型全攻略

    這也會帶來新問題,隨著模型參數(shù)增加,回復(fù)速度會明顯下降,實際應(yīng)用中需根據(jù)需求權(quán)衡。使用 Ollama 工具部署推理模型運行時主要依賴 CPU 運算。從運行監(jiān)測數(shù)據(jù)能看到,模型回復(fù)時
    發(fā)表于 02-14 17:42

    摩爾線程宣布成功部署DeepSeek蒸餾模型推理服務(wù)

    近日,摩爾線程智能科技(北京)有限責(zé)任公司在其官方渠道發(fā)布了一則重要消息,宣布公司已經(jīng)成功實現(xiàn)了對DeepSeek蒸餾模型推理服務(wù)的部署。這一技術(shù)突破,標(biāo)志著摩爾線程在人工智能領(lǐng)域邁出了堅實的一步
    的頭像 發(fā)表于 02-06 13:49 ?1176次閱讀

    采用華為云 Flexus 云服務(wù)器 X 實例部署 YOLOv3 算法完成目標(biāo)檢測

    一、前言 1.1 開發(fā)需求 這篇文章講解:?采用華為云最新推出的 Flexus 云服務(wù)器 X 實例部署 YOLOv3 算法,完成圖像分析、目標(biāo)檢測。 隨著計算機(jī)視覺技術(shù)的飛速發(fā)展,深度學(xué)習(xí)模型
    的頭像 發(fā)表于 01-02 12:00 ?1015次閱讀
    采用華為云 Flexus 云服務(wù)器 X 實例<b class='flag-5'>部署</b> YOLOv3 算法完成<b class='flag-5'>目標(biāo)</b><b class='flag-5'>檢測</b>

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測模型

    以及邊緣計算能力的增強(qiáng),越來越多的目標(biāo)檢測應(yīng)用開始直接在靠近數(shù)據(jù)源的邊緣設(shè)備上運行。這不僅減少了數(shù)據(jù)傳輸延遲,保護(hù)了用戶隱私,同時也減輕了云端服務(wù)器的壓力。然而,在邊緣端部署高效且準(zhǔn)確的目標(biāo)
    發(fā)表于 12-19 14:33

    如何開啟Stable Diffusion WebUI模型推理部署

    如何開啟Stable Diffusion WebUI模型推理部署
    的頭像 發(fā)表于 12-11 20:13 ?1141次閱讀
    如何開啟Stable Diffusion WebUI<b class='flag-5'>模型</b><b class='flag-5'>推理</b><b class='flag-5'>部署</b>