chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

介紹各種紋理分析方法并結合深度學習提升紋理分類

新機器視覺 ? 來源:Trapti Kalra ? 作者:Trapti Kalra ? 2022-09-14 10:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

導讀

紋理分析的介紹,各種紋理分析方法,并結合深度學習提升紋理分類。

人工智能的一個獨特應用領域是幫助驗證和評估材料和產品的質量。在IBM,我們開發(fā)了創(chuàng)新技術,利用本地移動設備,專業(yè)的微型傳感器技術,和AI,提供實時、解決方案,利用智能手機技術,來代替易于出錯的視覺檢查設備和實驗室里昂貴的設備。

在開發(fā)質量和可靠性檢查的人工智能能力的同時,產品和材料的圖像需要是高清晰度的或者是微觀尺度的,因此,設計能夠同時代表采樣圖像的局部和全局獨特性的特征變得極為重要。利用來自紋理分析方法的特征來豐富基于深度CNN的模型是一種非常有效的方法來實現(xiàn)更好的訓練模型。

為了更好地理解紋理分析方法在深度學習中的應用,我們先來了解一下什么是紋理分析。

什么是紋理?

紋理是粗糙度、對比度、方向性、線條相似性、規(guī)則性和粗糙度的度量,有助于我們理解圖像中顏色或強度的空間排列。紋理是圖像強度中局部變化的重復模式(圖1)。

0ed0f352-336d-11ed-ba43-dac502259ad0.png

圖1,紋理圖像示例 (a)原始圖像,(b)紋理重復模式

紋理由紋理原語或紋理元素組成,有時被稱為元紋理。元紋理用于從圖像中找到對象的色調和紋理。圖像的色調取決于元紋理的像素強度屬性,而紋理處理元紋理之間的空間連接。

例如,如果元紋理之間的色調差異很大,而元紋理的尺寸很小,它就像一個精細的紋理,如果一個元紋理包含很多像素,那么它就像一個粗糙的紋理。

我們需要了解不同類型的紋理才能正確地分析它們。在開始任何與紋理相關的項目之前,最好知道你將處理什么樣的紋理。

不同類型的紋理

紋理的分類是困難的,因為它的一些屬性,如規(guī)律性、隨機性、均勻性和變形沒有得到適當?shù)亩x,以及紋理類型是廣泛的和復雜的。

通常,紋理像粗糙,凹凸,干燥,光澤,沙質,硬,尖銳等,屬于粗糙類別,而紋理像細,光滑,濕,皺,絲滑,軟,暗等,屬于光滑類別。

廣義上,紋理分為兩類,即觸覺視覺紋理。

觸覺指的是一個表面的直接有形的感覺,即觸覺紋理就像一個真實的對象。當一個物體被觸摸時,我們可以感覺到它的質地。手感可以是光滑、柔軟、堅硬、黏滑、粗糙、粘滑、絲滑等。自然紋理的例子有木頭、巖石、玻璃、金屬、樹葉等。

視覺紋理被定義為紋理產生給人類觀察者的視覺印象,也就是說,它不是真正的紋理,但它是人從圖像中檢查紋理的方法。照片中的物體可能看起來很粗糙,但是,照片的感覺總是平坦和光滑的。

根據(jù)視覺紋理的隨機性程度,可以進一步將視覺紋理分為規(guī)則紋理和隨機紋理。

將簡單可識別的小尺寸的部分平貼到固體周期模式中,形成“規(guī)則紋理”,而隨機模式中較難識別部分組成“隨機紋理”。

那么,現(xiàn)在最大的問題是,紋理分析在提高計算機視覺任務中深度學習的有效性方面的意義是什么?

紋理分析用在哪里?

如今,紋理分析是許多任務的重要組成部分,從醫(yī)學影像遙感,也被用于大型圖像數(shù)據(jù)庫的內容查詢。

工業(yè)檢測中,當現(xiàn)有的技術無法解決的時候,紋理分析是一個強大的工具。讓我們以木材制造為例,在這種情況下,不使用紋理分析很難檢測裂紋。

紋理檢測還用于對地毯進行分級中,根據(jù)地毯因磨損引起的外觀變化。紋理分析用于皮革檢查,通過評估顏色、厚度和灰度變化。有缺陷的碎片通常會在皮革上留下疤痕或褶皺。

紋理分析的應用范圍包括紋理分類,如遙感(圖5),紋理分割,如生物醫(yī)學成像(圖6)。它還被用于圖像合成和模式識別任務,如從照片中識別繪畫。

當圖像中的物體是通過紋理屬性而不是強度進行分類,或者閾值技術無法對其進行正確分類時,紋理分析就發(fā)揮了重要作用。

0f3e85f2-336d-11ed-ba43-dac502259ad0.png

圖5,利用紋理分析的遙感圖像。由遙感領域的專家對這些紋理模式進行聚類識別和標記

下圖(圖6)顯示了二流腔靜脈的超聲圖像(圖的下三分之一處為鈍區(qū))。肝臟的分割,被白色斑點包圍的區(qū)域,顯示出與周圍組織相比獨特的紋理。

0f4f88c0-336d-11ed-ba43-dac502259ad0.png

圖6,利用紋理分析的醫(yī)學圖像

如今,紋理分析也被用于食品制造行業(yè),以了解食品的質量。硬糖、耐嚼的巧克力曲奇、脆餅干、粘稠的太妃糖、脆芹菜、嫩牛排等食物都含有多種紋理。紋理分析在這一領域有很大的應用,例如食物的口感特性可以通過紋理分析很容易地測量出來。

它也被用于一項名為“流變學”的研究,這是一門研究物質變形和流動的科學,換句話說,是研究物體受到外力作用時的反應。

除了所有這些,紋理分析可以用來測量/評估許多產品的質量,如粘合劑,藥品,皮膚/頭發(fā)護理產品,聚合物等。

到目前為止,我們已經了解了紋理分析可以應用在哪里,在下一節(jié)讓我們看看如何根據(jù)紋理對圖像進行分類。

紋理分析如何應用到分類問題中以及為何它如此重要?

到目前為止,我們已經了解了不同類型的紋理,并看到了現(xiàn)實生活中紋理分析很有用的例子。讓我們了解如何在分類問題中使用它,分類器的主要目標是通過為每個圖像提供描述符來對紋理圖像進行分類。換句話說,

分配一個未知的樣本到一個預定義的紋理類被稱為紋理分類

在進行紋理分類時,考慮了圖像的圖案和紋理內容?;诩y理的分類是基于紋理特征(如粗糙度、不規(guī)則性、均勻性、平滑度等)進行的。任何圖像數(shù)據(jù)集中的每個類都很可能具有不同的紋理,這使得它成為一個獨特的屬性,有助于模型更準確地對圖像進行分類。

提取紋理的不同技術和方法

有多種方法用于從圖像中提取紋理。在本文中,我們將討論最常用和最重要的紋理提取方法。

GLCM (Grey Level Co-occurrence Matrix,灰度共生矩陣)是一種常用的、基本的紋理分析統(tǒng)計方法。GLCM特征基于二階統(tǒng)計量,用于從均勻性、同質性等角度了解像素間的平均相關程度。

LBP是一種結合了結構和統(tǒng)計方法的方法,使紋理分析更有效。現(xiàn)實中LBP的一個重要特征是它對不同光照條件引起的單調的灰度變化的容忍度。它的簡單計算允許在實時場景中使用。

小波是一種基于變換的方法,可以捕捉局部的頻率和空間信息。GLCM和LBP關注的是紋理的空間排列,但紋理的關鍵要素是尺度,根據(jù)一項心理-視覺研究,我們的大腦處理圖像的方式是多尺度的。我們的大腦會進行不同的空間頻率分析來識別紋理?;谶@一思想,小波分析關注的是頻率和空間信息。

分形是圖像自相似性和粗糙度的重要度量。它能夠表征其他紋理分析方法所不能表征的紋理。有各種各樣的技術來測量圖像的平滑度、均勻度、平均值和標準差,但分形方法主要關注圖像紋理的“粗糙度”,并相應地對紋理進行分類。

圖像梯度是一種檢測圖像邊緣的完美技術,因為它變得更容易識別紋理時,邊緣高亮。紋理邊界用于自然邊界的有效劃分,一旦這些邊界被正確識別,基于這些邊界的紋理區(qū)分就很簡單了。

這五種方法對不同的紋理數(shù)據(jù)集都取得了滿意的結果。每種技術都強調紋理的獨特屬性。在下面的部分中,我們將研究這些技術的特征構造方法。

灰度共生矩陣 (GLCM):

GLCM提供了關于圖像像素之間如何相互關聯(lián)的信息,這種關系幫助我們根據(jù)從GLCM中提取的多個特征對紋理進行分類。矩陣給出了具有相似強度的像素的位置信息??赡艿膹姸戎导鲜嵌S數(shù)組的行和列標簽(P)

poYBAGMhP_OAS2z8AAF5vRs3td4893.jpg
pYYBAGMhP_uAcbuGAAIBSepy2kc252.jpg
pYYBAGMhQASAQKLbAAFE257oip0828.jpg
poYBAGMhQAuACmB_AAIxWF_LOOg533.jpg
poYBAGMhQBOAetuRAAJEu5tmudQ548.jpg
poYBAGMhQE-AJdLWAAGawTli-1w216.jpg
poYBAGMhQFWAcXlCAAFO1Duzk-4874.jpg
poYBAGMhQF2AbET6AAHj0jTRw4s700.jpg
pYYBAGMhQGSAPtb9AAG8u3SBYoo321.jpg
poYBAGMhQGuAKsnJAAGGGJZ7NvI583.jpg
pYYBAGMhQJ-AGDnkAADSNj9L0CM435.jpg
poYBAGMhQKaAKWQ-AAIHioIHY1M472.jpg
poYBAGMhQK2AJVbSAAE4suyjSec036.jpg
poYBAGMhQLSAd0VjAAIF38AXZK0916.jpg
pYYBAGMhQLuAQjcRAAFhTyzvoko398.jpg



審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • IBM
    IBM
    +關注

    關注

    3

    文章

    1856

    瀏覽量

    76804
  • 人工智能
    +關注

    關注

    1813

    文章

    49806

    瀏覽量

    262198
  • 微型傳感器
    +關注

    關注

    0

    文章

    44

    瀏覽量

    16780

原文標題:紋理分析以及結合深度學習來提升紋理分類效果

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    實現(xiàn)效率31.4%的紋理化鈣鈦礦/硅疊層電池:溴功能化二元混合SAM增強電荷提取與界面鈍化

    優(yōu)化能級對齊、抑制界面復合,從而提升電池性能。然而,在工業(yè)化中廣泛采用的紋理化硅襯底上,傳統(tǒng)烷基鏈SAMs易發(fā)生團聚,導致覆蓋不均勻,嚴重制約了疊層電池的效率與穩(wěn)
    的頭像 發(fā)表于 12-15 09:03 ?124次閱讀
    實現(xiàn)效率31.4%的<b class='flag-5'>紋理</b>化鈣鈦礦/硅疊層電池:溴功能化二元混合SAM增強電荷提取與界面鈍化

    實現(xiàn)效率33.1%的全紋理鈣鈦礦/硅疊層電池:兩步混合蒸發(fā)法結合PDAI界面層誘導體相電子積累

    鈣鈦礦/硅疊層電池是光伏領域的重要方向,但現(xiàn)有高性能疊層電池多以“溶液法”制備鈣鈦礦,需定制硅底電池(如拋光、適配金字塔尺寸),與工業(yè)主流>1μm隨機金字塔紋理硅不兼容;全紋理鈣鈦礦/硅疊層
    的頭像 發(fā)表于 12-05 09:02 ?702次閱讀
    實現(xiàn)效率33.1%的全<b class='flag-5'>紋理</b>鈣鈦礦/硅疊層電池:兩步混合蒸發(fā)法<b class='flag-5'>結合</b>PDAI界面層誘導體相電子積累

    如何深度學習機器視覺的應用場景

    深度學習視覺應用場景大全 工業(yè)制造領域 復雜缺陷檢測:處理傳統(tǒng)算法難以描述的非標準化缺陷模式 非標產品分類:對形狀、顏色、紋理多變的產品進行智能分類
    的頭像 發(fā)表于 11-27 10:19 ?89次閱讀

    基于級聯(lián)分類器的人臉檢測基本原理

    本次分享的內容是基于級聯(lián)分類器的人臉檢測基本原理 1) 人臉檢測概述 關于人臉檢測算法,目前主流方法分為兩類,一類是基于知識,主要方法包括模板匹配,人臉特征,形狀和邊緣,紋理特征,
    發(fā)表于 10-30 06:14

    構建CNN網絡模型優(yōu)化的一般化建議

    通過實踐,本文總結了構建CNN網絡模型優(yōu)化的一般化建議,這些建議將會在構建高準確率輕量級CNN神經網絡模型方面提供幫助。 1)避免單層神經網絡:我們清楚神經網絡本身是需要不斷抽象出更高級別的紋理
    發(fā)表于 10-28 08:02

    Franuhofer ISE最新研究:效率達33.1%,全紋理鈣鈦礦/硅串聯(lián)電池通過兩步混合蒸發(fā)法+PDAI界面層賦能

    鈣鈦礦/硅疊層電池是光伏領域的重要方向,但現(xiàn)有高性能疊層電池多以“溶液法”制備鈣鈦礦,需定制硅底電池(如拋光、適配金字塔尺寸),與工業(yè)主流>1μm隨機金字塔紋理硅不兼容;全紋理鈣鈦礦/硅疊層
    的頭像 發(fā)表于 09-12 09:03 ?1354次閱讀
    Franuhofer ISE最新研究:效率達33.1%,全<b class='flag-5'>紋理</b>鈣鈦礦/硅串聯(lián)電池通過兩步混合蒸發(fā)法+PDAI界面層賦能

    【Sipeed MaixCAM Pro開發(fā)板試用體驗】基于MaixCAM-Pro的AI生成圖像鑒別系統(tǒng)

    1. 項目概述 本項目旨在開發(fā)部署一個高精度的深度學習模型,用于自動鑒別一張圖片是由AI生成(如Stable Diffusion, DALL-E, Midjourney等工具生成)還是真實的畫家
    發(fā)表于 08-21 13:59

    HarmonyOS優(yōu)化應用預置圖片資源加載耗時問題性能優(yōu)化

    考慮在獲取更大收益的同時減少其開銷造成的影響。因此紋理超壓縮的性能提升要從收益和開銷兩部分進行分析: 1.收益 紋理壓縮的主要收益是在編譯過程中將預置圖片轉換為
    發(fā)表于 05-29 16:11

    封裝失效分析的流程、方法及設備

    本文首先介紹了器件失效的定義、分類和失效機理的統(tǒng)計,然后詳細介紹了封裝失效分析的流程、方法及設備。
    的頭像 發(fā)表于 03-13 14:45 ?1712次閱讀
    封裝失效<b class='flag-5'>分析</b>的流程、<b class='flag-5'>方法</b>及設備

    軍事應用中深度學習的挑戰(zhàn)與機遇

    ,廣泛介紹深度學習在兩個主要軍事應用領域的應用:情報行動和自主平臺。最后,討論了相關的威脅、機遇、技術和實際困難。主要發(fā)現(xiàn)是,人工智能技術并非無所不能,需要謹慎應用,同時考慮到其局
    的頭像 發(fā)表于 02-14 11:15 ?844次閱讀

    洲明科技U-Natural紋理屏:革新LED為建筑創(chuàng)新材料

    點此查看原文鏈接 “讓“屏”賦與“情感”,做全球第一個LED直顯‘藝術裝飾屏’!”這是洲明20周年大會上,其研發(fā)工程師對“U-Natural紋理屏”的描述! ? 作為洲明科技又一個全球領先、實現(xiàn)了
    的頭像 發(fā)表于 02-12 09:10 ?1722次閱讀
    洲明科技U-Natural<b class='flag-5'>紋理</b>屏:革新LED為建筑創(chuàng)新材料

    Imagination D系列GPU:關于2D 雙速率紋理處理

    對于每一代GPU,Imagination內部的性能團隊都會運行廣泛的測試內容,分析理解不同類型的工作負載及其瓶頸。作為分析的一部分,數(shù)據(jù)顯示許多現(xiàn)代游戲在執(zhí)行后處理算法上花費了越來越多的時間,以
    的頭像 發(fā)表于 02-08 14:28 ?707次閱讀
    Imagination D系列GPU:關于2D 雙速率<b class='flag-5'>紋理</b>處理

    xgboost在圖像分類中的應用

    和易用性,在各種機器學習任務中得到了廣泛應用,包括分類、回歸和排序問題。在圖像分類領域,盡管深度學習
    的頭像 發(fā)表于 01-19 11:16 ?1605次閱讀

    VirtualLab Fusion應用:衍射光束擴散器產生LightTrans標識的設計與分析

    不同的方法來生成光的圖案。利用相干激光和衍射擴散器元件,可以實現(xiàn)良好的效率和有趣的光紋理,這將在下面進行演示。 避免0級衍射產生的影響 為了阻擋0級衍射,衍射擴散器將被設計成產生一個離軸
    發(fā)表于 01-04 08:47

    傳統(tǒng)機器學習方法和應用指導

    用于開發(fā)生物學數(shù)據(jù)的機器學習方法。盡管深度學習(一般指神經網絡算法)是一個強大的工具,目前也非常流行,但它的應用領域仍然有限。與深度學習相比
    的頭像 發(fā)表于 12-30 09:16 ?2023次閱讀
    傳統(tǒng)機器<b class='flag-5'>學習方法</b>和應用指導