chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

利用簡單的熔鹽處理改善石榴石的空氣穩(wěn)定性和界面兼容性

清新電源 ? 來源:電化學(xué)能源 ? 作者:ECE整理 ? 2022-10-17 09:28 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

【研究背景】

石榴石型電解質(zhì)由于其高離子傳導(dǎo)性和寬廣的電化學(xué)窗口,在固態(tài)鋰電池的應(yīng)用中表明出巨大的潛力。然而,由于空氣暴露而形成的表面Li2CO3 ,引發(fā)了與鋰金屬的不均勻接觸,導(dǎo)致了不良的枝晶生長和性能惡化。

【工作介紹】

本工作通過采取熔融NH4H2PO4 鹽驅(qū)動的轉(zhuǎn)換反應(yīng),在石榴石表面建立取代Li2CO3 污染物的Li3PO4 層。高流動性的熔鹽有助于Li3PO4 的保形形成,通過防止空氣中H2O/CO2的反應(yīng),實現(xiàn)了空氣穩(wěn)定的石榴石。

此外,Li3PO4 在鋰金屬上的高附著力,以及在與熔融鋰金屬接觸時從Li3PO4 轉(zhuǎn)變?yōu)長i3P/Li2O,使得親鋰的界面得以形成,導(dǎo)致鋰/石榴石的可以無縫接觸,實現(xiàn)超低的界面電阻為13Ωcm2 。

這樣的離子傳導(dǎo)但電子絕緣層可以調(diào)節(jié)鋰流量的均勻分布,使臨界電流密度達(dá)到1.2 mAcm?2 。

此外,改性石榴石的固體LiCoO2 /Li電池在30°C下的放電容量為130 mAh g?1 ,同時在150次循環(huán)后容量保持率為81%。

這項研究提出了一個很有前途的解決方案,即利用簡單的熔鹽處理改善石榴石的空氣穩(wěn)定性和界面兼容性。

【具體內(nèi)容】

9a33c014-4db2-11ed-a3b6-dac502259ad0.png

圖1-a) LLZTO顆粒遭受空氣暴露,形成表面Li2CO3 ,然后用熔融NH4H2PO4 鹽處理。產(chǎn)生的表面Li3PO4 層保護(hù)LLZTO塊體免受空氣中H2O/CO2 的進(jìn)一步攻擊。b) LLZTO表面的熔融Li與Li2CO3 污染物的示意圖,其中接觸角大于90°。c) Li3PO4 修飾的LLZTO表面的熔融Li的示意圖,在此期間,包括Li3P和Li2O在內(nèi)的離子導(dǎo)電SEI膜在原位形成,導(dǎo)致密集的Li/LLZTO界面,接觸角<90°。

熔融NH4H2PO4 鹽處理的LLZTO顆粒的特性

Li6.4La3Zr1.4Ta0.6O12 (LLZTO)電解質(zhì)是通過固相反應(yīng)和熱壓燒結(jié)制備的。LLZTO顆粒的橫截面掃描電子顯微鏡(SEM)圖像證明了其高密度和緊湊的晶粒接觸。LLZTO顆粒的離子電導(dǎo)率在30℃時為1.05 × 10?3 Scm?1。

圖2a,b表明了新制備的LLZTO和熔融的NH4H2PO4 鹽處理的LLZTO在空氣中暴露20天之前和之后的X射線衍射(XRD)圖案和拉曼光譜。在X射線衍射圖譜中檢測到≈21.4°的Li2CO3 特征峰,同時在新鮮LLZTO的拉曼光譜中檢測到1089cm?1 的CO32? 振動峰,這表明即使在制備石榴石顆粒的過程中也會形成表面污染物。

表面Li2CO3 的數(shù)量隨著暴露在空氣中時間的增加而不斷增加。為了去除表面污染物,在185℃下用熔融的NH4H2PO4 鹽處理LLZTO,基于其與Li2CO3 的轉(zhuǎn)化反應(yīng),如公式1所示。

9a3dc406-4db2-11ed-a3b6-dac502259ad0.png

9a45f7de-4db2-11ed-a3b6-dac502259ad0.png

圖2-a) 新鮮LLZTO和LLZTO-LPO顆粒在空氣中暴露20天前后的XRD圖譜和b) 拉曼光譜。d) 方程1的吉布斯自由能變化與溫度的關(guān)系。e) 已制備的LLZTO-LPO顆粒的俯視SEM圖像,以及f)C、P、O和Zr的相應(yīng)元素圖譜。

熱分析表明,Li2CO3 粉末表現(xiàn)出高度的熱穩(wěn)定性,在400℃以下沒有明顯的重量損失。同時,NH4H2PO4 粉末在180℃左右開始分解為磷酸(H3PO4 )和NH3 ,隨后H3PO4 在≈250℃分解為焦磷酸(H4P2O7 )和H2O。關(guān)于NH4H2PO4 和Li2CO3 的混合物,與單一的NH4H2PO4 或Li2CO3 粉末相比,在≈154℃時開始明顯出現(xiàn)較大的重量損失,表明由于NH4H2PO4 和Li2CO3 的化學(xué)反應(yīng)而釋放出NH3 、H2O 和CO2 的氣體。

經(jīng)過這樣的轉(zhuǎn)化反應(yīng),惰性的Li2CO3 被作為LLZTO表面保護(hù)層的離子導(dǎo)電Li3PO4 所取代(LLZTO-LPO),伴隨著無副作用的氣體釋放。從圖2a,b中可以看出,經(jīng)過處理的LLZTO顆粒消除了Li2CO3 峰,沒有額外的雜質(zhì)信號,這驗證了熔融NH4H2PO4 鹽在不改變LLZTO結(jié)構(gòu)的情況下去除污染物的可行性。

此外,新形成的Li3PO4 表面層阻擋了LLZTO塊體在空氣中受到H2O和CO2 的反復(fù)攻擊,可防止碳酸酯污染物的不利影響超過20天(圖2a,b)。

如圖2c所示,考慮到XRD和拉曼測量得到的LLZTO表面層的信號相當(dāng)微弱,這可能是由于從Li2CO3 到Li3PO4 的界面演化量很小,因此通過高分辨率X射線光電子能譜(XPS)進(jìn)一步分析LLZTO表面化學(xué)成分的轉(zhuǎn)變。

對于未經(jīng)處理的LLZTO顆粒(即制造后暴露在空氣中3天的顆粒),C 1s光譜中位于289.8和284.7 eV的峰分別代表碳酸酯污染物和C-H基團(tuán)。在經(jīng)過熔鹽處理后,強(qiáng)烈的CO32? 信號消失了,而P 2p譜中134.0 eV的峰出現(xiàn)了,揭示了在LLZTO表面由Li2CO3 轉(zhuǎn)化為Li3PO4 。

此外,進(jìn)一步進(jìn)行了LLZTO-LPO顆粒的C 1s和P 2p的XPS深度曲線,Ar 濺射時間為0、60、300和800秒。隨著蝕刻時間的增加,LLZTO-LPO的C 1s和P 2p的峰位幾乎保持不變,也就是說,C 1s光譜中≈290 eV處對應(yīng)碳酸鹽污染物的峰沒有了,而P 2p光譜中≈134.0 eV處源自Li3PO4 的峰在整個蝕刻過程中存在。

因此,XPS結(jié)果也證明了通過熔鹽處理用Li3PO4 層替代Li2CO3 。此外,即使重新暴露在空氣中長達(dá)20天,Li3PO4 修飾的LLZTO顆粒的XPS光譜與經(jīng)過處理的顆粒相比幾乎沒有變化,表明其對空氣侵蝕的高度穩(wěn)定性。此外,通過密度函數(shù)理論(DFT)計算得到的方程1的隨溫度變化的吉布斯自由能(圖2d)。在0至200℃的溫度范圍內(nèi),吉布斯自由能變化保持在零以下,因此,在185℃的實驗溫度下,石榴石表面的Li2CO3 可以自發(fā)地轉(zhuǎn)化為Li3PO4 。

通過SEM收集了LLZTO經(jīng)熔鹽處理后的形態(tài)變化。自發(fā)形成的表面Li2CO3 在空氣暴露后完全覆蓋了LLZTO基體,厚度為≈1 μm??紤]到熔融的NH4H2PO4 鹽的高流動性和反應(yīng)性,從Li2CO3 到Li3PO4 的保形轉(zhuǎn)換預(yù)計會在LLZTO表面發(fā)生。圖2e,g的SEM圖像表明,在LLZTO表面產(chǎn)生了一個致密而均勻的Li3PO4 層,平均厚度為≈0.8微米。

相應(yīng)的元素圖譜檢測到的碳(C)的信號明顯減弱,以及磷(P)的均勻分布,進(jìn)一步說明了Li3PO4 在表面的全面覆蓋。在空氣暴露20天后老化的LLZTO-LPO的表面形態(tài)與未經(jīng)處理的對應(yīng)物(圖2e)幾乎沒有區(qū)別。因此,這種熔鹽驅(qū)動的轉(zhuǎn)化反應(yīng)不僅清除了石榴石表面的碳酸類污染物,同時原位構(gòu)建了離子導(dǎo)電表面層,而且在再次暴露于空氣中時,通過防止H2O和CO2 的侵蝕,使石榴石電解質(zhì)具有空氣穩(wěn)定性。

Li3PO4 – 修飾的LLZTO 片的電化學(xué)性能

為了研究各種界面的內(nèi)聚力,進(jìn)行了粘附功(Wad )的DFT計算。圖3表明了Li2CO3 (001)/Li(001)和Li3PO4 (001)/Li(001)的結(jié)構(gòu)和完全放松的界面超單元。Wad 代表分離界面兩部分的成本能量,Wad 越高,說明界面附著力越強(qiáng),反之亦然。能量計算結(jié)果表明,Li3PO4 (001)/Li(001)表現(xiàn)出更高的Wad (2.452 J m?2 )和更低的界面能量(0.0808 J m?2 ),而Li2CO3 (001)/Li(001)相應(yīng)的數(shù)值為(0.183和0.3558 J m?2 )。

這表明,通過用Li3PO4 層原位取代其表面Li2CO3 ,LLZTO和Li金屬之間的界面潤濕性和穩(wěn)定性大大改善,界面分層的趨勢較小。

9a781430-4db2-11ed-a3b6-dac502259ad0.png

圖3-a)Li2CO3 (001)/Li(001)界面的原子結(jié)構(gòu)和b)完全松弛的超單元,以及c)Li3PO4 (001)/Li(001)界面的原子結(jié)構(gòu)和d)完全松弛的超單元。

通過將LLZTO-LPO顆粒與熔融的Li附著在一起,進(jìn)一步實驗測量了LLZTO-LPO對Li金屬的潤濕性。如圖4a中,熔化的Li在未經(jīng)處理的LLZTO顆粒表面迅速變成一個液態(tài)球,接觸角高于90°,證明了未經(jīng)處理的LLZTO的憎鋰特性。如圖4a的SEM圖像所示,由于這種差的表面潤濕行為,在Li和未經(jīng)處理的LLZTO顆粒之間的界面上觀察到大量的微隙。

由疏水性表面Li2CO3 引起的有限的Li/LLZTO接觸點導(dǎo)致了局部電場的不均勻性,從而導(dǎo)致了非均勻的Li+ 通量,導(dǎo)致了最終的枝晶狀生長和電池失效(圖4d)。相反,熔化的鋰在LLZTO-LPO表面擴(kuò)散,沒有發(fā)生卷曲或起皺,這伴隨著接觸角降低到90°以下,表明LLZTO-LPO顆粒具有良好的潤濕性(見圖4b的照片)。

這種增強(qiáng)的潤濕性與Li3PO4 /Li界面的較高Wad 值是一致的。毫無疑問,就Li/LLZTO-LPO界面而言,獲得了連續(xù)和無縫的接觸,沒有間隙或缺陷(圖4b,c)。親鋰表面層的形成有助于鋰/LZTO界面的親密接觸,引發(fā)了均勻和穩(wěn)定的Li+通量(圖4d)。這使得界面阻力減少,枝晶抑制能力提高。

9a8583b8-4db2-11ed-a3b6-dac502259ad0.png

圖4-a) Li/LLZTO和b) Li/LLZTO-LPO界面的橫截面SEM圖像和照片。d) Li/LLZTO和Li/LLZTO-LPO界面的示意圖比較。e) LLZTO-LPO表面與熔融Li接觸前后的O 1s和P 2p的XPS光譜。插圖是Li/LLZTO-LPO/Li電池的放大EIS曲線。g) 單個Li/LLZTO和Li/LLZTO-LPO界面的計算電阻。h)時間恒定模式和i)容量恒定模式下Li/LZTO-LPO/Li電池的CCD曲線。所有的電化學(xué)測量都是在30℃下進(jìn)行的。

從LLZTO-LPO表面小心地摘下鋰箔,以分析Li3PO4 層與熔融鋰接觸后的界面轉(zhuǎn)換化學(xué)。圖4e表明了LLZTO-LPO表面與熔融鋰接觸前后的O 1s和P 2p的XPS光譜。在與熔融鋰接觸之前,O 1s光譜中的531.2 eV和P 2p光譜中的134.0 eV兩個峰都表示LLZTO顆粒上存在表面Li3PO4 層。接觸后,在O 1s光譜中出現(xiàn)了一個新的峰值528.5 eV,這是源于Li2O的轉(zhuǎn)化產(chǎn)物。

同時,也檢測到Li3PO4 演化成Li3P,這被P 2p光譜中出現(xiàn)的131.3 eV的峰值所證實。因此,表面的Li3PO4 與熔融的Li發(fā)生了部分反應(yīng),導(dǎo)致Li2O和Li3P層的原位構(gòu)建。根據(jù)以前的文獻(xiàn)資料。鋰可以與Li3PO4 反應(yīng),基于以下公式2。

9aa1de6e-4db2-11ed-a3b6-dac502259ad0.png

自限性界面轉(zhuǎn)化反應(yīng)進(jìn)一步平衡了石榴石和鋰金屬之間的不同表面能,這對改善潤濕性和親鋰性是有利的。

此外,由于Li3PO4 薄膜具有適度的高離子傳導(dǎo)性。沒有參與界面反應(yīng)的Li3PO4 與LLZTO顆粒擁有良好的接觸,有助于增強(qiáng)Li +在Li/LLZTO界面的轉(zhuǎn)移。更重要的是,這種由Li3P、Li2O和殘留的Li3PO4 組成的類似LiPON的SEI復(fù)合層具有離子傳導(dǎo)性,但具有電子絕緣性,在抑制枝晶的形成和生長方面起著關(guān)鍵作用。

組裝了基于Li/LLZTO/Li和Li/LLZTO-LPO/Li的對稱電池,以評估Li3PO4 修飾對調(diào)節(jié)陽極界面的Li沉積的影響。電化學(xué)阻抗光譜(EIS)被用來測量有或沒有Li3PO4 層的Li/LLZTO界面的電荷轉(zhuǎn)移電阻,如圖4f所示。EIS光譜的最初幾個點源于LLZTO體的整體電阻。

由于使用了相同的LLZTO電解質(zhì),兩個對稱電池的電阻幾乎相同。鋰/LLZTO/鋰電池的EIS曲線在中頻處表明一個大的半圓,對應(yīng)于界面上的電荷轉(zhuǎn)移電阻。考慮到對稱電池中兩個平行的Li/LLZTO界面的電荷轉(zhuǎn)移,這個總的轉(zhuǎn)移電阻應(yīng)該除以2來獲得每個Li/LLZTO界面的界面電阻。

因此,Li/LLZTO的界面電阻被計算為303Ω cm2 (圖4g)。與Li/LLZTO/Li電池不同的是,對于具有LLZTO-LPO電解質(zhì)的對稱電池,中頻的兩個半圓分別來自于通過LLZTO/LPO和LPO/Li界面的電荷轉(zhuǎn)移(圖4f的插圖)。很明顯,Li/LZTO-LPO界面的電阻急劇下降到13Ωcm2 (圖4g),這是由于加強(qiáng)了界面粘附性和潤濕性。

更重要的是,當(dāng)使用老化的LLZTO-LPO顆粒在空氣中暴露20天后,Li/LZTO-LPO的界面電阻略微增加到16Ωcm2。這種界面電阻的降低為鋰的均勻沉積和增強(qiáng)電化學(xué)性能奠定了堅實的基礎(chǔ)。

階梯式增加的電流密度被用來確定有和沒有表面Li3PO4 的LLZTO的臨界電流密度(CCD)。采用了兩種CCD測試模式,即時間恒定模式(固定循環(huán)時間為0.5小時的剝離和0.5小時的電鍍,從0.1到1.5mA cm?2 ),和容量恒定模式(固定面積容量為0.2mA cm?2 ),如圖4h,i所示。

在時間恒定模式的情況下,帶有未經(jīng)處理的LLZTO的對稱電池在開始時表現(xiàn)出明顯的極化,隨后在只有0.3 mAcm?2 時迅速短路。未經(jīng)處理的LLZTO的低CCD可以歸因于由疏水性表面Li2CO3 引起的與Li-金屬的不均勻界面接觸,導(dǎo)致局部電場集中和快速枝晶滲透。

而Li/LZTO-LPO/Li電池實現(xiàn)了高達(dá)0.8 mAcm?2 的CCD增加。同樣的趨勢發(fā)生在通過容量恒定模式測試的CCD上。具體來說,未經(jīng)處理的LLZTO檢測到0.1 mAcm?2 的CCD,而Li3PO4 修飾的對應(yīng)物則為1.2 mAcm?2 (圖4i)。值得注意的是,Li/LLZTO/Li電池在容量恒定模式下表明的CCD低于時間恒定模式,這與Li/LLZTO-LPO/Li電池不同。

對于Li/LZTO/Li電池,在容量恒定模式下,0.1 mAhcm?2 的Li電鍍或剝離的總面積容量達(dá)到0.1 mAcm?2 。同時,在時間恒定模式下(0.5小時的剝離和0.5小時的電鍍),在0.1mA cm?2 ,電鍍或剝離的總面積容量達(dá)到0.05mA cm?2 。在時間恒定模式下的電池忍受的累積容量比在容量恒定模式下的少。

因此,當(dāng)受到0.2mA cm?2 ,容量恒定模式的電池被快速短路,而時間恒定模式的電池可以進(jìn)一步承受這個電流密度。就Li/LZTO-LPO/Li電池而言,它可以承受逐漸增加的電流密度,直到0.9 mAcm?2 ,在時間恒定模式下對應(yīng)的面積容量為0.45 mAhcm?2 。

考慮到0.2 mAhcm?2 的恒定容量模式,0.4 mAcm?2 的電流密度與0.5小時的剝離/電鍍時間有關(guān)。進(jìn)一步增加的電流密度與低于0.5小時的剝離/電鍍時間的減少相對應(yīng)。因此,Li/LZTO-LPO/Li電池可以在容量恒定模式下以1.2 mAcm?2 的電流密度正常循環(huán),這比時間恒定模式的0.8 mAcm?2 更大。這些結(jié)果與之前的結(jié)論一致,即低容量時通過容量恒定模式獲得的CCD高于時間恒定模式,而高容量時則相反。

簡而言之,無論采用哪種模式,Li3PO4 和Li之間的附著力得到加強(qiáng),再加上Li3PO4 到離子導(dǎo)體Li3P/Li2O的界面轉(zhuǎn)換,使得LLZTO的潤濕性得到改善,Li+ 流量分布均勻,因此即使在電流密度升高的情況下也能獲得穩(wěn)定的Li鍍層和剝離。本工作中的室溫界面電阻和CCD與最近報道的工作中的相應(yīng)數(shù)值相當(dāng)。

為了評估Li/LLZTO界面的長期耐受性和穩(wěn)定性,在不同的電流密度下對有和沒有表面修飾的LLZTO電解質(zhì)的Li對稱電池進(jìn)行了靜電循環(huán)測試。Li/LLZTO/Li電池在0.1 mAcm?2 的初始Li電鍍/剝離循環(huán)中表現(xiàn)出一個傾斜的過電位,最高達(dá)154 mV,隨后在25個循環(huán)中快速短路。

不均勻的Li/LLZTO接觸引發(fā)了明顯增加的界面電阻和不均勻的電流分布,從而導(dǎo)致了大的極化和快速枝晶狀的滲透。此外,循環(huán)后LLZTO顆粒的橫截面SEM圖像進(jìn)一步驗證了這種金屬鋰在石榴石上的滲透現(xiàn)象(圖5e)。與未經(jīng)處理的LLZTO的不良性能不同,Li/LZTO-LPO/Li電池可以平穩(wěn)地運行超過1000小時,在0.1mA cm?2 (圖5a),有一個相當(dāng)小的電壓平臺≈12 mV。

鋰/LZTO-LPO/鋰電池在電化學(xué)循環(huán)后的EIS圖表明在整個長期循環(huán)過程中具有穩(wěn)固的界面。此外,原位掃描電鏡測量表征了1000小時循環(huán)后分解的Li/LZTO-LPO/Li對稱電池的橫截面形態(tài)。

如圖5c所示,鋰金屬陽極在循環(huán)過程中與LLZTO-LPO電解液保持緊密接觸,沒有任何可見的分層,這與未循環(huán)的鋰/LLZTO-LPO界面的形態(tài)幾乎相同(圖4b,c)。同時,通過循環(huán)后LLZTO-LPO的橫截面SEM圖像,沒有檢測到枝晶狀的滲透信號(圖5d)。

穩(wěn)定而緊密的Li/LLZTO-LPO接觸以及在循環(huán)過程中被抑制的枝晶形成,揭示了在Li3PO4 修飾的Li/LLZTO界面上有利的電荷轉(zhuǎn)移和甚至Li+ 通量。至于進(jìn)一步增加的電流密度0.2、0.3和0.4mA cm?2 ,基于LLZTO-LPO的對稱電池可以保持?jǐn)?shù)百小時的穩(wěn)定循環(huán),電壓曲線平坦而穩(wěn)定(圖5b)。

這些證據(jù)證實,在Li3PO4 層的幫助下,石榴石界面具有親鋰性和堅固性,即使在高電流密度下也能實現(xiàn)長期的界面穩(wěn)定性和無枝晶狀的鋰沉積。得益于LLZTO-LPO的高空氣穩(wěn)定性,使用老化的LLZTO-LPO電解質(zhì)的對稱鋰電池也可以在30℃、0.1和0.2mA cm?2 ,穩(wěn)定地循環(huán)800和500小時。

9aad8926-4db2-11ed-a3b6-dac502259ad0.png

圖5-鋰/LZTO-LPO/鋰電池在不同的電流密度(a)0.1,b)0.3和0.4 mAcm?2 ,分別進(jìn)行鋰電鍍/剝離過程的循環(huán)曲線。c) 相應(yīng)的鋰對稱電池在0.1 mAcm?2 循環(huán)1000小時后,Li/LZTO-LPO界面的橫截面SEM圖像。d) LLZTO-LPO,和e) 未經(jīng)處理的LLZTO顆粒在0.1 mAcm?2 循環(huán)后的橫截面SEM圖像。所有的電化學(xué)測量都是在30℃下進(jìn)行的。

為了驗證Li3PO4 改性LLZTO電解質(zhì)在實際應(yīng)用中的可行性,構(gòu)建了帶有LiCoO2 (LCO)陰極、LLZTO-LPO固態(tài)電解質(zhì)和鋰金屬陽極的全電池,如圖6a所示。值得注意的是,熔化的鋰直接附著在改性LLZTO顆粒的一側(cè),以便進(jìn)行緊密的陽極接觸。

痕量離子液體被用來濕潤LCO/LLZTO-LPO界面,以便在陰極內(nèi)部和陰極與電解質(zhì)之間構(gòu)建離子傳導(dǎo)通道。由于Li3PO4 修飾降低了陽極的界面電阻,LCO/LZTO-LPO/Li電池表現(xiàn)出比原始LCO/LZTO/Li電池(587Ωcm2)低很多的電阻。與電池電阻一致,LCO/LZTO-LPO/Li電池的充放電曲線在0.1、0.2和0.5C的不同速率下保持了良好的形狀,具有低極化(圖6b)。

它在0.5C時的放電容量為104 mAh g?1 ,是0.1C時的80%(130 mAh g?1 ,圖6c)。相對而言,基于未經(jīng)處理的LLZTO的電池?fù)碛幸粋€不均勻的陽極界面接觸,導(dǎo)致大的極化。由于不良的陽極界面帶來的不利影響隨著電流密度的增加而變得更加明顯,這種極化現(xiàn)象在受到更大的速率時變得更加嚴(yán)重,在0.1、0.2和0.5C時的放電容量分別為118、92和41 mAh g?1。

同時,LCO/LZTO/Li電池的放電能力在長期循環(huán)過程中迅速下降。圖6d,e表明了LCO/LZTO-LPO/Li電池的循環(huán)性能,它在幾乎整個循環(huán)過程中保持穩(wěn)定的充放電行為,庫侖效率高于99%。此外,基于改性LLZTO的全電池在150次循環(huán)后實現(xiàn)了81%(105 mAh g?1 )的高容量保持。

良好的速率和循環(huán)性能都是由于構(gòu)建了穩(wěn)定和堅固的鋰/LLZTO界面,證明了熔鹽處理的石榴石對于實現(xiàn)高性能固態(tài)鋰電池的可行性。

9ae18a96-4db2-11ed-a3b6-dac502259ad0.png

圖6-a) 采用LLZTO-LPO電解質(zhì)的LCO/Li全電池的電化學(xué)性能。b) LCO/LLZTO-LPO/Li電池的充放電曲線和c) 不同速率下的相應(yīng)放電容量和庫侖效率。d) LCO/LZTO-LPO/Li電池在0.1C下典型的第1、50、100和150次循環(huán)的充放電曲線。e) LCO/LZTO-LPO/Li電池在0.1C循環(huán)時的比容量和庫侖效率。所有的電化學(xué)測量都是在30℃下進(jìn)行的。

【結(jié)論】

采用熔融NH4H2PO4 鹽驅(qū)動的轉(zhuǎn)化反應(yīng),在原位構(gòu)建Li3PO4 保護(hù)層,取代石榴石表面的Li2CO3 污染物。由于熔鹽的高流動性和反應(yīng)性,表面Li3PO4 在LLZTO表面形成,通過阻斷空氣中H2O/CO2 的侵蝕,防止表面碳酸酯污染物再生20多天,從而實現(xiàn)了石榴石的高空氣穩(wěn)定性。

DFT計算表明,Li3PO4 /Li的Wad 遠(yuǎn)高于Li2CO3 /Li的W ,表明界面結(jié)合和潤濕性得到改善。此外,在與熔融的鋰金屬接觸后,表面的Li3PO4 部分轉(zhuǎn)化為由Li3P和Li2O組成的SEI層,導(dǎo)致了無縫的Li/LLZTO界面和13Ωcm2 的低界面電阻。這種離子傳導(dǎo)但電子絕緣的SEI層有助于鋰通量的均勻分布,因此它能夠在1.2mA cm?2的高臨界電流密度下實現(xiàn)無枝晶狀的鋰沉積。

此外,使用LLZTO-LPO電解質(zhì)的固體LiCoO2 /Li全電池表現(xiàn)出令人滿意的速率和循環(huán)性能,在30°C下穩(wěn)定循環(huán)超過150次,容量保持率為81%。因此,所提出的熔鹽處理方法對于實現(xiàn)空氣穩(wěn)定和界面兼容的石榴石電解質(zhì)是有希望的。





審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 電解質(zhì)
    +關(guān)注

    關(guān)注

    6

    文章

    829

    瀏覽量

    21251
  • DFT
    DFT
    +關(guān)注

    關(guān)注

    2

    文章

    236

    瀏覽量

    23910
  • 鋰金屬電池
    +關(guān)注

    關(guān)注

    0

    文章

    148

    瀏覽量

    4910

原文標(biāo)題:郭向欣AFM:一招將石榴石固態(tài)電解質(zhì)變得空氣穩(wěn)定且親鋰

文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    專業(yè)解讀:多孔碲技術(shù)如何提升石榴石固態(tài)鋰金屬電池性能

    鋰金屬負(fù)極實現(xiàn)高能量密度而極具前景。然而,鋰金屬與固體電解質(zhì)界面穩(wěn)定的鋰沉積/剝離會導(dǎo)致鋰枝晶生長,進(jìn)而引發(fā)短路和長循環(huán)穩(wěn)定性差的問題,阻礙了其商業(yè)化進(jìn)程。雖然
    的頭像 發(fā)表于 12-16 18:04 ?97次閱讀
    專業(yè)解讀:多孔碲技術(shù)如何提升<b class='flag-5'>石榴石</b>固態(tài)鋰金屬電池性能

    CW32 MCU在高頻率運行下的系統(tǒng)穩(wěn)定性的提升方案

    在嵌入式系統(tǒng)中,CW32 MCU的高頻率運行能夠顯著提高系統(tǒng)的處理速度和響應(yīng)能力,但也伴隨著系統(tǒng)穩(wěn)定性問題的挑戰(zhàn),特別是跑飛現(xiàn)象的出現(xiàn)。本文將深入探討CW32 MCU在高頻率運行時的系統(tǒng)穩(wěn)定性
    發(fā)表于 12-04 08:04

    備用電池的容量和環(huán)境兼容性對電能質(zhì)量在線監(jiān)測裝置的精度有何影響?

    備用電池的 容量 和 環(huán)境兼容性 均通過 影響供電穩(wěn)定性 間接作用于電能質(zhì)量在線監(jiān)測裝置的精度 —— 容量決定供電 “持續(xù)穩(wěn)定性”,環(huán)境兼容性決定供電 “動態(tài)
    的頭像 發(fā)表于 11-27 18:00 ?1186次閱讀
    備用電池的容量和環(huán)境<b class='flag-5'>兼容性</b>對電能質(zhì)量在線監(jiān)測裝置的精度有何影響?

    如何利用X-Ray技術(shù)提升鋰電池安全穩(wěn)定性

    非破壞、高分辨率的優(yōu)勢,成為提升鋰電池品質(zhì)和安全性能的重要工具。本文將深入探討如何利用X-Ray技術(shù)提升鋰電池安全穩(wěn)定性,幫助企業(yè)優(yōu)化產(chǎn)品質(zhì)量,滿足日益嚴(yán)苛的市場需求,解決鋰電池
    的頭像 發(fā)表于 10-13 14:22 ?330次閱讀

    接口穩(wěn)定性:車載智能終端可靠檢測的關(guān)鍵維度

    接口機(jī)械結(jié)構(gòu)耐久測試對設(shè)備的要求,本質(zhì)是通過 “被測對象合規(guī)、工裝模擬精準(zhǔn)、監(jiān)測數(shù)據(jù)可靠”,實現(xiàn)對接口真實使用場景的有效復(fù)現(xiàn)。只有設(shè)備滿足精度、兼容性穩(wěn)定性要求,才能準(zhǔn)確暴露接口在長期使用中的機(jī)械缺陷(如材料疲勞、結(jié)構(gòu)松動)
    的頭像 發(fā)表于 08-01 08:00 ?1451次閱讀
    接口<b class='flag-5'>穩(wěn)定性</b>:車載智能終端可靠<b class='flag-5'>性</b>檢測的關(guān)鍵維度

    TOPCon電池穩(wěn)定性提升 | PL/EL檢測改進(jìn)LECO兼容性銀漿

    激光增強(qiáng)接觸優(yōu)化(LECO)是提升TOPCon電池效率的有效技術(shù)。然而,亟需改進(jìn)LECO兼容銀漿以確保TOPCon電池的可靠穩(wěn)定性。本研究通過在導(dǎo)電銀漿的無機(jī)玻璃粉中引入Al/Ga/Fe元素優(yōu)化
    的頭像 發(fā)表于 07-18 09:04 ?775次閱讀
    TOPCon電池<b class='flag-5'>穩(wěn)定性</b>提升 | PL/EL檢測改進(jìn)LECO<b class='flag-5'>兼容性</b>銀漿

    德明利兼容性實驗室:構(gòu)建面向多平臺生態(tài)的全棧驗證體系

    存儲設(shè)備的兼容情況影響終端系統(tǒng)的運行效率與穩(wěn)定性,德明利兼容性實驗室通過構(gòu)建多維度驗證體系,為四大產(chǎn)品線提供系統(tǒng)兼容性、互操作、能效和性能
    的頭像 發(fā)表于 06-04 10:02 ?853次閱讀
    德明利<b class='flag-5'>兼容性</b>實驗室:構(gòu)建面向多平臺生態(tài)的全棧驗證體系

    儲熱:500℃高溫“充電寶”如何破解新能源消納難題?

    電子發(fā)燒友網(wǎng)報道(文/黃山明)儲熱技術(shù)是一種利用熔融作為介質(zhì),通過顯熱或潛熱方式儲存熱能的技術(shù),主要應(yīng)用于中高溫場景(200-800℃)。其核心原理是通過
    的頭像 發(fā)表于 04-26 00:09 ?2522次閱讀

    如何維護(hù)微波網(wǎng)絡(luò)分析儀以確保測量精度和穩(wěn)定性

    維護(hù)微波網(wǎng)絡(luò)分析儀以確保測量精度和穩(wěn)定性,需從環(huán)境控制、日常操作、定期校準(zhǔn)、硬件維護(hù)和軟件管理五個維度系統(tǒng)化實施。以下是具體措施及實施要點:一、環(huán)境控制:基礎(chǔ)保障 溫濕度管理 溫度:保持20-25
    發(fā)表于 04-23 14:53

    采集卡兼容性測試:確保穩(wěn)定可靠的視頻信號捕獲與處理

    兼容所有應(yīng)用場景。因此,進(jìn)行全面嚴(yán)謹(jǐn)?shù)牟杉?b class='flag-5'>兼容性測試,是確保其穩(wěn)定可靠運行,并最終保障用戶體驗的關(guān)鍵環(huán)節(jié)。本文將深入探討采集卡兼容性測試的重要
    的頭像 發(fā)表于 03-11 17:24 ?1146次閱讀
    采集卡<b class='flag-5'>兼容性</b>測試:確保<b class='flag-5'>穩(wěn)定</b>可靠的視頻信號捕獲與<b class='flag-5'>處理</b>

    軍工EMC檢測測試整改:確保裝備穩(wěn)定的電磁兼容性

    深圳南柯電子|軍工EMC檢測測試整改:確保裝備穩(wěn)定的電磁兼容性
    的頭像 發(fā)表于 03-06 09:43 ?777次閱讀
    軍工EMC檢測測試整改:確保裝備<b class='flag-5'>穩(wěn)定</b>的電磁<b class='flag-5'>兼容性</b>

    電壓跟隨器的穩(wěn)定性分析

    。由于電壓跟隨器的增益接近1,其電路結(jié)構(gòu)相對簡單,通常包含一個運算放大器和若干個電阻,因此通常具有較高的穩(wěn)定性和可靠。 二、影響穩(wěn)定性的因素 運算放大器的特性 : 運算放大器的電壓增
    的頭像 發(fā)表于 02-17 18:17 ?1612次閱讀

    超聲波焊接有利于解決固態(tài)電池的枝晶問題

    以及荷質(zhì)傳輸不連續(xù)等問題。 為有效解決SSLMBs的界面難題,研究人員提出了多種策略以增強(qiáng)界面穩(wěn)定性。從陶瓷電解質(zhì)的角度出發(fā),可去除石榴石表面雜質(zhì)相,方法包括熱
    發(fā)表于 02-15 15:08

    旋轉(zhuǎn)測徑儀的底座如何保證穩(wěn)定性

    的底座材質(zhì) 1.高硬度材料:如石英石、不銹鋼等,這些材料具有較高的硬度和抗壓,能夠有效抵抗外部壓力和變形,從而確保底座的穩(wěn)定性。 2.耐腐蝕材料:在潮濕或腐蝕環(huán)境中,選擇耐腐蝕的材料(如不銹鋼)可以
    發(fā)表于 01-09 14:04

    如何提高中繼器的傳輸穩(wěn)定性

    受到影響。 1. 選擇合適的中繼器 選擇合適的中繼器是提高傳輸穩(wěn)定性的第一步。中繼器的性能參數(shù),如信號放大能力、帶寬和兼容性,都會影響到最終的傳輸效果。 信號放大能力 :選擇具有足夠信號放大能力的中繼器,以確保信號
    的頭像 發(fā)表于 12-26 16:43 ?1678次閱讀