chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

NVIDIA與飛槳共同深度適配的NGC飛槳容器在NVIDIA GPU上體驗

NVIDIA英偉達企業(yè)解決方案 ? 來源:NVIDIA英偉達企業(yè)解決方案 ? 作者:NVIDIA英偉達企業(yè)解 ? 2022-11-01 10:41 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

PaddleOCR 發(fā)版 v2.6,帶來全新升級的 PP-StructureV2 智能文檔分析系統(tǒng),實現(xiàn)一鍵 PDF 轉(zhuǎn) Word。歡迎廣大開發(fā)者使用 NVIDIA 與飛槳共同深度適配的 NGC 飛槳容器在 NVIDIA GPU 上體驗!

1. PaddleOCR v2.6 版本升級

隨著企業(yè)數(shù)字化進程不斷加速,PDF 轉(zhuǎn) Word 的功能、紙質(zhì)文本的電子化存儲、文件復(fù)原與二次編輯、信息檢索等應(yīng)用都有著強烈的企業(yè)需求。目前市面上已有一些軟件,但普遍需要繁瑣的安裝注冊操作,大多還存在額度限制。此外,最終轉(zhuǎn)換效果也依賴于版面形態(tài),無法做到針對性適配。

針對開發(fā)者的需求,飛槳文字識別套件 PaddleOCR 全新發(fā)布 PP-StructureV2 智能文檔分析系統(tǒng),支持一行命令實現(xiàn) PDF 轉(zhuǎn) Word 功能,文字、表格、標題、圖片都可完整恢復(fù),一鍵實現(xiàn) PDF 編輯自由!

db0f69ac-5934-11ed-a3b6-dac502259ad0.png

文檔分析示例

PP-StructureV2 智能文檔分析系統(tǒng)升級點包括以下 2 方面:

系統(tǒng)功能升級:新增圖像矯正和版面復(fù)原模塊,支持標準格式 PDF 和圖片格式 PDF 解析!

系統(tǒng)性能優(yōu)化:

版面分析:發(fā)布輕量級版面分析模型,速度提升 11 倍,平均 CPU 耗時僅需 41ms!

表格識別:設(shè)計 3 大優(yōu)化策略,預(yù)測耗時不變情況下,模型精度提升 6%。

關(guān)鍵信息抽?。涸O(shè)計視覺無關(guān)模型結(jié)構(gòu),語義實體識別精度提升 2.8%,關(guān)系抽取精度提升超過 9.1%。

GitHub 傳送門:

https://github.com/PaddlePaddle/PaddleOCR

1.1 PP-StructureV2 智能文檔分析系統(tǒng)優(yōu)化策略概述

PP-StructureV2 系統(tǒng)流程圖如下所示,文檔圖像首先經(jīng)過圖像矯正模塊,判斷整圖方向并完成轉(zhuǎn)正,隨后可以完成版面信息分析與關(guān)鍵信息抽取 2 類任務(wù)。

db3ed746-5934-11ed-a3b6-dac502259ad0.png

在版面分析任務(wù)中,圖像首先經(jīng)過版面分析模型,將圖像劃分為文本、表格、圖像等不同區(qū)域,隨后對這些區(qū)域分別進行識別,如,將表格區(qū)域送入表格識別模塊進行結(jié)構(gòu)化識別,將文本區(qū)域送入 OCR 引擎進行文字識別,最后使用版面恢復(fù)模塊將其恢復(fù)為與原始圖像布局一致的 Word 或者 PDF 格式的文件。

在關(guān)鍵信息抽取任務(wù)中,首先使用 OCR 引擎提取文本內(nèi)容,然后由語義實體識別模塊獲取圖像中的語義實體,最后經(jīng)關(guān)系抽取模塊獲取語義實體之間的對應(yīng)關(guān)系,從而提取需要的關(guān)鍵信息。

算法改進思路來看,對系統(tǒng)中的 3 個關(guān)鍵子模塊,共進行了 8 個方面的改進:

版面分析

PP-PicoDet:輕量級版面分析模型

FGD:兼顧全局與局部特征的模型蒸餾算法

表格識別

PP-LCNet: CPU 友好型輕量級骨干網(wǎng)絡(luò)

CSP-PAN:輕量級高低層特征融合模塊

SLAHead:結(jié)構(gòu)與位置信息對齊的特征解碼模塊

關(guān)鍵信息抽取

VI-LayoutXLM:視覺特征無關(guān)的多模態(tài)預(yù)訓練模型結(jié)構(gòu)

TB-YX:考慮閱讀順序的文本行排序邏輯

UDML:聯(lián)合互學習知識蒸餾策略

最終,與 PP-StructureV1 相比:

版面分析模型參數(shù)量減少 95%,推理速度提升 11 倍,精度提升 0.4%;

表格識別預(yù)測耗時不變,模型精度提升 6%,端到端 TEDS 提升 2%;

關(guān)鍵信息抽取模型速度提升 2.8 倍,語義實體識別模型精度提升 2.8%;關(guān)系抽取模型精度提升 9.1%。

PP-StructureV2 優(yōu)化詳細策略解析三日課回放,可以掃描下方二維碼,加入 PaddleOCR 官方交流群獲取。除此之外,入群福利還包括:社區(qū)開發(fā)者基于 PP-StructureV2 開發(fā)的 PDF2Word 應(yīng)用程序、《動手學 OCR》電子書、10 個 OCR 場景應(yīng)用垂類模型等。

PP-StructureV2 技術(shù)報告:

https://arxiv.org/abs/2210.05391v2

2. NGC 飛槳容器介紹

如果您希望體驗 PaddleOCRv2.6 的新特性,歡迎使用 NGC 飛槳容器。NVIDIA 與百度飛槳共同開發(fā)了 NGC 飛槳容器,將最新版本的飛槳與最新的 NVIDIA 的軟件棧(如 CUDA)進行了無縫的集成與性能優(yōu)化,最大程度的釋放飛槳框架在 NVIDIA 最新硬件上的計算能力。這樣,用戶不僅可以快速開啟 AI 應(yīng)用,專注于創(chuàng)新和應(yīng)用本身,還能夠在 AI 訓練和推理任務(wù)上獲得飛槳+NVIDIA 帶來的飛速體驗。

最佳的開發(fā)環(huán)境搭建工具 - 容器技術(shù)。

容器其實是一個開箱即用的服務(wù)器。極大降低了深度學習開發(fā)環(huán)境的搭建難度。例如你的開發(fā)環(huán)境中包含其他依賴進程(redis,MySQL,Ngnix,selenium-hub等等),或者你需要進行跨操作系統(tǒng)級別的遷移。

容器鏡像方便了開發(fā)者的版本化管理

容器鏡像是一種易于復(fù)現(xiàn)的開發(fā)環(huán)境載體

容器技術(shù)支持多容器同時運行

最好的 PaddlePaddle 容器

NGC 飛槳容器針對 NVIDIA GPU 加速進行了優(yōu)化,并包含一組經(jīng)過驗證的庫,可啟用和優(yōu)化 NVIDIA GPU 性能。此容器還可能包含對 PaddlePaddle 源代碼的修改,以最大限度地提高性能和兼容性。此容器還包含用于加速 ETL (DALI, RAPIDS)、訓練(cuDNN, NCCL)和推理 (TensorRT)工作負載的軟件。

PaddlePaddle 容器具有以下優(yōu)點:

適配最新版本的 NVIDIA 軟件棧(例如最新版本 CUDA),更多功能,更高性能。

更新的 Ubuntu 操作系統(tǒng),更好的軟件兼容性

按月更新

滿足 NVIDIA NGC 開發(fā)及驗證規(guī)范,質(zhì)量管理

通過飛槳官網(wǎng)快速獲取

環(huán)境準備

使用 NGC 飛槳容器需要主機系統(tǒng)(Linux)安裝以下內(nèi)容:

Docker 引擎

NVIDIA GPU 驅(qū)動程序

NVIDIA 容器工具包

有關(guān)支持的版本,請參閱 NVIDIA 框架容器支持矩陣和 NVIDIA 容器工具包文檔。

不需要其他安裝、編譯或依賴管理。無需安裝 NVIDIA CUDA Toolkit。

3. 飛槳與 NVIDIA NGC 合作介紹

目前飛槳已擁有超過 470 萬的開發(fā)者。而在過去五年,飛槳與 NVIDIA 團隊緊密合作,雙方深度融合,做了大量適配工作。

今年,NVIDIA 在國內(nèi)也已經(jīng)設(shè)立了專門的工程團隊支持,賦能飛槳生態(tài)。

而為了讓更多的開發(fā)者能用上基于 NVIDIA 最新的高性能硬件和軟件棧。當前,NVIDIA 團隊正在進行全新一代 GPU 的適配工作,以及提高飛槳對 CUDA Operation API 的使用率,讓飛槳的開發(fā)者擁有優(yōu)秀的用戶體驗及極致性能。

以上的各種適配,僅僅是讓飛槳的開發(fā)者擁有高性能的推理訓練成為可能。但是,這些離行業(yè)開發(fā)者還很遠,門檻還很高,難度還很大。

為此,我們將剛剛這些集成和優(yōu)化工作,整合到三大產(chǎn)品線中。其中 NGC 飛槳容器最為閃亮。

審核編輯:彭靜
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • NVIDIA
    +關(guān)注

    關(guān)注

    14

    文章

    5431

    瀏覽量

    108275
  • 存儲
    +關(guān)注

    關(guān)注

    13

    文章

    4627

    瀏覽量

    89008
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    5036

    瀏覽量

    133739
  • 飛槳
    +關(guān)注

    關(guān)注

    0

    文章

    37

    瀏覽量

    2588

原文標題:在 NVIDIA NGC 上體驗一鍵 PDF 轉(zhuǎn) Word

文章出處:【微信號:NVIDIA-Enterprise,微信公眾號:NVIDIA英偉達企業(yè)解決方案】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    沐曦與百度PaddleScience實現(xiàn)全面深度適配

    近日,WAVE SUMMIT深度學習開發(fā)者大會2025硬件分論壇北京·望京凱悅酒店二層成功舉辦。本次論壇以“軟硬協(xié)同 模力無限”為主題,匯聚中國信息通信研究院、英特爾、安謀科技、沐曦、天數(shù)智芯
    的頭像 發(fā)表于 09-29 11:41 ?556次閱讀

    NVIDIA RTX PRO 4500 Blackwell GPU測試分析

    今天我們帶來全新 NVIDIA Blackwell 架構(gòu) GPU —— NVIDIA RTX PRO 4500 Blackwell 的測試,對比上一代產(chǎn)品 NVIDIA RTX 450
    的頭像 發(fā)表于 08-28 11:02 ?2135次閱讀
    <b class='flag-5'>NVIDIA</b> RTX PRO 4500 Blackwell <b class='flag-5'>GPU</b>測試分析

    NVIDIA桌面GPU系列擴展新產(chǎn)品

    NVIDIA 桌面 GPU 系列擴展,推出 NVIDIA RTX PRO 4000 SFF Edition GPU 和 RTX PRO 2000 Blackwell
    的頭像 發(fā)表于 08-18 11:50 ?756次閱讀

    NVIDIA NVLink 深度解析

    引言 NVIDIA NVLink 是一種關(guān)鍵的高速互連技術(shù),專為加速計算而設(shè)計,尤其是GPU 系統(tǒng)以及 GPU 和支持 CPU 之間 ^1^。NVLink 的出現(xiàn)標志著傳統(tǒng)互連瓶
    的頭像 發(fā)表于 05-06 18:14 ?3274次閱讀

    燧原科技正式納入例行版本發(fā)布體系

    燧原科技與經(jīng)過長時間的適配合作和持續(xù)集成(CI)建設(shè),對合?的每?行代碼都在燧原硬件上進?了驗證。如今,燧原正式納入
    的頭像 發(fā)表于 04-11 11:31 ?680次閱讀
    燧原科技正式納入<b class='flag-5'>飛</b><b class='flag-5'>槳</b>例行版本發(fā)布體系

    百度框架3.0正式版發(fā)布

    、推理等任務(wù)都離不開深度學習框架的優(yōu)化與支撐。 框架3.0,從設(shè)計理念上實現(xiàn)了從底層硬件適配到頂層開發(fā)體驗的全面進化,訓練效率、性能、
    的頭像 發(fā)表于 04-02 19:03 ?977次閱讀
    百度<b class='flag-5'>飛</b><b class='flag-5'>槳</b>框架3.0正式版發(fā)布

    沐曦曦云C500通用計算GPU與百度完成Ⅱ級兼容性測試

    近日,沐曦曦云C500通用計算GPU與百度已完成Ⅱ級兼容性測試。測試結(jié)果顯示,雙方兼容性表現(xiàn)良好,整體運行穩(wěn)定。這是沐曦加入“硬件生
    的頭像 發(fā)表于 03-31 14:22 ?1240次閱讀

    使用NVIDIA RTX PRO Blackwell系列GPU加速AI開發(fā)

    NVIDIA GTC 推出新一代專業(yè)級 GPU 和 AI 賦能的開發(fā)者工具—同時,ChatRTX 更新現(xiàn)已支持 NVIDIA NIM,RTX Remix 正式結(jié)束測試階段,本月的 NVIDIA
    的頭像 發(fā)表于 03-28 09:59 ?889次閱讀

    NVIDIA GPU助力科研人員探索外星世界

    NVIDIA GPU 驅(qū)動的深度學習短短幾秒內(nèi)解讀出了卡西尼號土星探測器多年來收集的海量數(shù)據(jù),為科研人員探索外星世界提供了更加智能的方式。
    的頭像 發(fā)表于 02-27 10:37 ?731次閱讀

    如何在C#中部署PP-OCRv4模型

    《超4萬6千星的開源OCR黑馬登場,PaddleOCR憑什么脫穎而出?》收到了讀者熱烈反響c,很多讀者提出:如何在C#中部署PP-OCRv4模型?本文從零開始詳細介紹整個過程。
    的頭像 發(fā)表于 02-17 10:58 ?2413次閱讀
    如何在C#中部署<b class='flag-5'>飛</b><b class='flag-5'>槳</b>PP-OCRv4模型

    NVIDIA和GeForce RTX GPU專為AI時代打造

    NVIDIA 和 GeForce RTX GPU 專為 AI 時代打造。
    的頭像 發(fā)表于 01-06 10:45 ?1068次閱讀

    《CST Studio Suite 2024 GPU加速計算指南》

    的各個方面,包括硬件支持、操作系統(tǒng)支持、許可證、GPU計算的啟用、NVIDIA和AMD GPU的詳細信息以及相關(guān)的使用指南和故障排除等內(nèi)容。 1. 硬件支持 - NVIDIA
    發(fā)表于 12-16 14:25

    Ubuntu 24.04 LTS上安裝PaddleX

    前面我們介紹了《Windows用遠程桌面訪問Ubuntu 24.04.1 LTS》本文接著介紹安裝PaddleX。 PaddleX 3.0? 是基于飛框架構(gòu)建的一站式全流程開發(fā)
    的頭像 發(fā)表于 11-11 17:45 ?1203次閱讀
    <b class='flag-5'>在</b>Ubuntu 24.04 LTS上安裝<b class='flag-5'>飛</b><b class='flag-5'>槳</b>PaddleX

    凌智電子加入技術(shù)伙伴計劃,攜手PaddleX為視覺模組產(chǎn)品賦能添“智”

    近日,福州市凌睿智捷電子有限公司(以下簡稱凌智電子)正式加入技術(shù)伙伴計劃。雙方將共同探索人工智能技術(shù)邊緣端部署中的創(chuàng)新與應(yīng)用。凌智電子將憑借其
    的頭像 發(fā)表于 11-01 08:07 ?859次閱讀
    凌智電子加入<b class='flag-5'>飛</b><b class='flag-5'>槳</b>技術(shù)伙伴計劃,攜手PaddleX為視覺模組產(chǎn)品賦能添“智”

    AMD與NVIDIA GPU優(yōu)缺點

    圖形處理單元(GPU)市場,AMD和NVIDIA是兩大主要的競爭者,它們各自推出的產(chǎn)品性能、功耗、價格等方面都有著不同的特點和優(yōu)勢。 一、性能
    的頭像 發(fā)表于 10-27 11:15 ?4707次閱讀