chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

使用TensorBoard的機(jī)器學(xué)習(xí)模型分析

星星科技指導(dǎo)員 ? 來(lái)源:嵌入式計(jì)算設(shè)計(jì) ? 作者:Aekam Parmar ? 2022-11-22 16:30 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

機(jī)器學(xué)習(xí)正在突飛猛進(jìn)地發(fā)展,新的神經(jīng)網(wǎng)絡(luò)模型定期出現(xiàn)。

這些模型針對(duì)特定數(shù)據(jù)集進(jìn)行了訓(xùn)練,并經(jīng)過了準(zhǔn)確性和處理速度的證明。開發(fā)人員需要評(píng)估 ML 模型,并確保它在部署之前滿足預(yù)期的特定閾值和功能。有很多實(shí)驗(yàn)可以提高模型性能,在設(shè)計(jì)和訓(xùn)練模型時(shí),可視化差異變得至關(guān)重要。TensorBoard 有助于可視化模型,使分析變得不那么復(fù)雜,因?yàn)楫?dāng)人們可以看到問題所在時(shí),調(diào)試變得更加容易。

訓(xùn)練 ML 模型的一般實(shí)踐

一般做法是使用預(yù)先訓(xùn)練的模型并執(zhí)行遷移學(xué)習(xí),以便為類似的數(shù)據(jù)集重新訓(xùn)練模型。在遷移學(xué)習(xí)期間,神經(jīng)網(wǎng)絡(luò)模型首先針對(duì)與正在解決的問題類似的問題進(jìn)行訓(xùn)練。然后,將訓(xùn)練模型中的一個(gè)或多個(gè)層用于針對(duì)感興趣的問題進(jìn)行訓(xùn)練的新模型中。

大多數(shù)時(shí)候,預(yù)訓(xùn)練模型采用二進(jìn)制格式,這使得獲取內(nèi)部信息并立即開始處理變得困難。從組織的業(yè)務(wù)角度來(lái)看,使用一些工具來(lái)深入了解模型以縮短項(xiàng)目交付時(shí)間是有意義的。

有幾個(gè)可用選項(xiàng)可用于獲取模型信息,例如層數(shù)和相關(guān)參數(shù)。模型摘要和模型圖是基本選項(xiàng)。這些選項(xiàng)非常簡(jiǎn)單,考慮了幾行實(shí)現(xiàn),并提供非?;镜脑敿?xì)信息,如層數(shù)、層類型和每層的輸入/輸出。

但是,模型摘要和模型圖對(duì)于以協(xié)議緩沖區(qū)的形式理解任何大型復(fù)雜模型的每個(gè)細(xì)節(jié)并不那么有效。在這種情況下,使用 TensorBoard 這個(gè) TensorFlow 提供的可視化工具更有意義??紤]到它提供的各種可視化選項(xiàng),如模型、標(biāo)量和指標(biāo)(訓(xùn)練和驗(yàn)證數(shù)據(jù))、圖像(來(lái)自數(shù)據(jù)集)、超參數(shù)調(diào)優(yōu)等,它非常強(qiáng)大。

用于可視化自定義模型的模型圖

此選項(xiàng)尤其有助于以協(xié)議緩沖區(qū)的形式接收自定義模型,并且在進(jìn)行任何修改或訓(xùn)練之前需要了解它。如下圖所示,在電路板上可視化了順序 CNN 的概述。每個(gè)塊代表一個(gè)單獨(dú)的圖層,選擇其中一個(gè)塊將在右上角打開一個(gè)窗口,其中包含輸入和輸出信息。

如果需要進(jìn)一步的信息,關(guān)于各個(gè)塊內(nèi)的內(nèi)容,只需雙擊塊,這將展開塊并提供更多詳細(xì)信息。請(qǐng)注意,一個(gè)塊可以包含一個(gè)或多個(gè)塊,這些塊可以逐層擴(kuò)展。選擇任何特定操作時(shí),它還將提供有關(guān)相關(guān)處理參數(shù)的更多信息。

用于分析模型訓(xùn)練和驗(yàn)證的標(biāo)量和指標(biāo)

機(jī)器學(xué)習(xí)的第二個(gè)重要方面是分析給定模型的訓(xùn)練和驗(yàn)證。從精度和速度的角度來(lái)看,性能對(duì)于使其適用于現(xiàn)實(shí)生活中的實(shí)際應(yīng)用非常重要。在下圖中,可以看出模型的準(zhǔn)確性隨著周期/迭代次數(shù)的增加而提高。如果訓(xùn)練和測(cè)試驗(yàn)證不符合標(biāo)準(zhǔn),則表明某些內(nèi)容不正確。這可能是欠擬合或過度擬合的情況,可以通過修改圖層/參數(shù)或改進(jìn)數(shù)據(jù)集或兩者來(lái)糾正。

圖像數(shù)據(jù),用于可視化數(shù)據(jù)集中的圖像

顧名思義,它有助于可視化圖像。它不僅限于可視化數(shù)據(jù)集中的圖像,而且還以圖像的形式顯示混淆矩陣。此矩陣表示檢測(cè)各個(gè)類對(duì)象的準(zhǔn)確性。如下圖所示,該模型將外套與套頭衫混淆了。為了克服這種情況,建議改進(jìn)特定類的數(shù)據(jù)集,以便為模型提供可區(qū)分的特征,以便更好地學(xué)習(xí),從而提高準(zhǔn)確性。

超參數(shù)調(diào)優(yōu),以實(shí)現(xiàn)所需的模型精度

模型的準(zhǔn)確性取決于輸入數(shù)據(jù)集、層數(shù)和相關(guān)參數(shù)。在大多數(shù)情況下,在初始訓(xùn)練期間,精度永遠(yuǎn)不會(huì)達(dá)到預(yù)期的精度,并且除了數(shù)據(jù)集之外,還需要考慮層數(shù)、層類型、相關(guān)參數(shù)。此過程稱為超參數(shù)優(yōu)化。

在此過程中,提供了一系列超參數(shù)供模型選擇,并且使用這些參數(shù)的組合運(yùn)行模型。每個(gè)組合的準(zhǔn)確性都會(huì)記錄在電路板上并可視化。它糾正了手動(dòng)訓(xùn)練模型所消耗的工作量和時(shí)間,這些工作和時(shí)間將針對(duì)超參數(shù)的每個(gè)可能組合進(jìn)行。

用于分析模型處理速度的分析工具

除了準(zhǔn)確性之外,處理速度是任何模型同樣重要的方面。有必要分析單個(gè)塊消耗的處理時(shí)間,以及是否可以通過進(jìn)行一些修改來(lái)減少處理時(shí)間。分析工具提供了具有不同時(shí)期的每個(gè)操作所消耗的時(shí)間的圖形表示。通過這種可視化,人們可以輕松查明消耗更多時(shí)間的操作。一些已知的開銷可能是調(diào)整輸入大小,從Python轉(zhuǎn)換模型代碼,或者在CPU而不是GPU中運(yùn)行代碼。處理好這些事情將有助于實(shí)現(xiàn)最佳性能。

總的來(lái)說,TensorBoard是一個(gè)很好的工具,有助于開發(fā)和訓(xùn)練過程。來(lái)自標(biāo)量和指標(biāo)、圖像數(shù)據(jù)和超參數(shù)優(yōu)化的數(shù)據(jù)有助于提高準(zhǔn)確性,而分析工具有助于提高處理速度。TensorBoard還有助于減少所涉及的調(diào)試時(shí)間,否則這肯定會(huì)是一個(gè)很大的時(shí)間框架。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 電路板
    +關(guān)注

    關(guān)注

    140

    文章

    5199

    瀏覽量

    105466
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8528

    瀏覽量

    135861
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    超小型Neuton機(jī)器學(xué)習(xí)模型, 在任何系統(tǒng)級(jí)芯片(SoC)上解鎖邊緣人工智能應(yīng)用.

    Neuton 是一家邊緣AI 公司,致力于讓機(jī)器 學(xué)習(xí)模型更易于使用。它創(chuàng)建的模型比競(jìng)爭(zhēng)對(duì)手的框架小10 倍,速度也快10 倍,甚至可以在最先進(jìn)的邊緣設(shè)備上進(jìn)行人工智能處理。在這篇博文
    發(fā)表于 07-31 11:38

    模型在半導(dǎo)體行業(yè)的應(yīng)用可行性分析

    的應(yīng)用,比如使用機(jī)器學(xué)習(xí)分析數(shù)據(jù),提升良率。 這一些大模型是否真的有幫助 能夠在解決工程師的知識(shí)斷層問題 本人純小白,不知道如何涉足這方面 應(yīng)該問什么大
    發(fā)表于 06-24 15:10

    邊緣計(jì)算中的機(jī)器學(xué)習(xí):基于 Linux 系統(tǒng)的實(shí)時(shí)推理模型部署與工業(yè)集成!

    你好,旅行者!歡迎來(lái)到Medium的這一角落。在本文中,我們將把一個(gè)機(jī)器學(xué)習(xí)模型(神經(jīng)網(wǎng)絡(luò))部署到邊緣設(shè)備上,利用從ModbusTCP寄存器獲取的實(shí)時(shí)數(shù)據(jù)來(lái)預(yù)測(cè)一臺(tái)復(fù)古音頻放大器的當(dāng)前健康狀況。你將
    的頭像 發(fā)表于 06-11 17:22 ?595次閱讀
    邊緣計(jì)算中的<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>:基于 Linux 系統(tǒng)的實(shí)時(shí)推理<b class='flag-5'>模型</b>部署與工業(yè)集成!

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長(zhǎng)以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 02-13 09:39 ?514次閱讀

    嵌入式機(jī)器學(xué)習(xí)的應(yīng)用特性與軟件開發(fā)環(huán)境

    作者:DigiKey Editor 在許多嵌入式系統(tǒng)中,必須采用嵌入式機(jī)器學(xué)習(xí)(Embedded Machine Learning)技術(shù),這是指將機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 01-25 17:05 ?977次閱讀
    嵌入式<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的應(yīng)用特性與軟件開發(fā)環(huán)境

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】2.具身智能機(jī)器人大模型

    近年來(lái),人工智能領(lǐng)域的大模型技術(shù)在多個(gè)方向上取得了突破性的進(jìn)展,特別是在機(jī)器人控制領(lǐng)域展現(xiàn)出了巨大的潛力。在“具身智能機(jī)器人大模型”部分,作者研究并探討了大
    發(fā)表于 12-29 23:04

    《具身智能機(jī)器人系統(tǒng)》第7-9章閱讀心得之具身智能機(jī)器人與大模型

    研讀《具身智能機(jī)器人系統(tǒng)》第7-9章,我被書中對(duì)大模型機(jī)器人技術(shù)融合的深入分析所吸引。第7章詳細(xì)闡述了ChatGPT for Robotics的核心技術(shù)創(chuàng)新:它摒棄了傳統(tǒng)的分層控制架
    發(fā)表于 12-24 15:03

    zeta在機(jī)器學(xué)習(xí)中的應(yīng)用 zeta的優(yōu)缺點(diǎn)分析

    在探討ZETA在機(jī)器學(xué)習(xí)中的應(yīng)用以及ZETA的優(yōu)缺點(diǎn)時(shí),需要明確的是,ZETA一詞在不同領(lǐng)域可能有不同的含義和應(yīng)用。以下是根據(jù)不同領(lǐng)域的ZETA進(jìn)行的分析: 一、ZETA在機(jī)器
    的頭像 發(fā)表于 12-20 09:11 ?1454次閱讀

    cmp在機(jī)器學(xué)習(xí)中的作用 如何使用cmp進(jìn)行數(shù)據(jù)對(duì)比

    機(jī)器學(xué)習(xí)領(lǐng)域,"cmp"這個(gè)術(shù)語(yǔ)可能并不是一個(gè)常見的術(shù)語(yǔ),它可能是指"比較"(comparison)的縮寫。 比較在機(jī)器學(xué)習(xí)中的作用 模型
    的頭像 發(fā)表于 12-17 09:35 ?1194次閱讀

    什么是機(jī)器學(xué)習(xí)?通過機(jī)器學(xué)習(xí)方法能解決哪些問題?

    計(jì)算機(jī)系統(tǒng)自身的性能”。事實(shí)上,由于“經(jīng)驗(yàn)”在計(jì)算機(jī)系統(tǒng)中主要以數(shù)據(jù)的形式存在,因此機(jī)器學(xué)習(xí)需要設(shè)法對(duì)數(shù)據(jù)進(jìn)行分析學(xué)習(xí),這就使得它逐漸成為智能數(shù)據(jù)
    的頭像 發(fā)表于 11-16 01:07 ?1340次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    緊密。 NPU的起源與特點(diǎn) NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)項(xiàng)目中提出,旨在為TensorFlow框架提供專用的硬件加速。NPU的設(shè)計(jì)目標(biāo)是提高機(jī)器學(xué)習(xí)算法的運(yùn)行效率,特別是在處理大規(guī)模數(shù)據(jù)集和復(fù)雜神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 09:19 ?1663次閱讀

    eda在機(jī)器學(xué)習(xí)中的應(yīng)用

    機(jī)器學(xué)習(xí)項(xiàng)目中,數(shù)據(jù)預(yù)處理和理解是成功構(gòu)建模型的關(guān)鍵。探索性數(shù)據(jù)分析(EDA)是這一過程中不可或缺的一部分。 1. 數(shù)據(jù)清洗 數(shù)據(jù)清洗 是機(jī)器
    的頭像 發(fā)表于 11-13 10:42 ?1193次閱讀

    LLM和傳統(tǒng)機(jī)器學(xué)習(xí)的區(qū)別

    在人工智能領(lǐng)域,LLM(Large Language Models,大型語(yǔ)言模型)和傳統(tǒng)機(jī)器學(xué)習(xí)是兩種不同的技術(shù)路徑,它們?cè)谔幚頂?shù)據(jù)、模型結(jié)構(gòu)、應(yīng)用場(chǎng)景等方面有著顯著的差異。 1.
    的頭像 發(fā)表于 11-08 09:25 ?2523次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對(duì)兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度學(xué)習(xí)
    的頭像 發(fā)表于 10-23 15:25 ?3377次閱讀

    AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)的區(qū)別

    AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)在多個(gè)方面存在顯著的區(qū)別。以下是對(duì)這些區(qū)別的介紹: 一、模型規(guī)模與復(fù)雜度 AI大模型 :通常包含數(shù)十億甚至數(shù)萬(wàn)億的參
    的頭像 發(fā)表于 10-23 15:01 ?3193次閱讀