chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

使用TensorBoard的機(jī)器學(xué)習(xí)模型分析

星星科技指導(dǎo)員 ? 來(lái)源:嵌入式計(jì)算設(shè)計(jì) ? 作者:Aekam Parmar ? 2022-11-22 16:30 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

機(jī)器學(xué)習(xí)正在突飛猛進(jìn)地發(fā)展,新的神經(jīng)網(wǎng)絡(luò)模型定期出現(xiàn)。

這些模型針對(duì)特定數(shù)據(jù)集進(jìn)行了訓(xùn)練,并經(jīng)過(guò)了準(zhǔn)確性和處理速度的證明。開(kāi)發(fā)人員需要評(píng)估 ML 模型,并確保它在部署之前滿(mǎn)足預(yù)期的特定閾值和功能。有很多實(shí)驗(yàn)可以提高模型性能,在設(shè)計(jì)和訓(xùn)練模型時(shí),可視化差異變得至關(guān)重要。TensorBoard 有助于可視化模型,使分析變得不那么復(fù)雜,因?yàn)楫?dāng)人們可以看到問(wèn)題所在時(shí),調(diào)試變得更加容易。

訓(xùn)練 ML 模型的一般實(shí)踐

一般做法是使用預(yù)先訓(xùn)練的模型并執(zhí)行遷移學(xué)習(xí),以便為類(lèi)似的數(shù)據(jù)集重新訓(xùn)練模型。在遷移學(xué)習(xí)期間,神經(jīng)網(wǎng)絡(luò)模型首先針對(duì)與正在解決的問(wèn)題類(lèi)似的問(wèn)題進(jìn)行訓(xùn)練。然后,將訓(xùn)練模型中的一個(gè)或多個(gè)層用于針對(duì)感興趣的問(wèn)題進(jìn)行訓(xùn)練的新模型中。

大多數(shù)時(shí)候,預(yù)訓(xùn)練模型采用二進(jìn)制格式,這使得獲取內(nèi)部信息并立即開(kāi)始處理變得困難。從組織的業(yè)務(wù)角度來(lái)看,使用一些工具來(lái)深入了解模型以縮短項(xiàng)目交付時(shí)間是有意義的。

有幾個(gè)可用選項(xiàng)可用于獲取模型信息,例如層數(shù)和相關(guān)參數(shù)。模型摘要和模型圖是基本選項(xiàng)。這些選項(xiàng)非常簡(jiǎn)單,考慮了幾行實(shí)現(xiàn),并提供非?;镜脑敿?xì)信息,如層數(shù)、層類(lèi)型和每層的輸入/輸出。

但是,模型摘要和模型圖對(duì)于以協(xié)議緩沖區(qū)的形式理解任何大型復(fù)雜模型的每個(gè)細(xì)節(jié)并不那么有效。在這種情況下,使用 TensorBoard 這個(gè) TensorFlow 提供的可視化工具更有意義??紤]到它提供的各種可視化選項(xiàng),如模型、標(biāo)量和指標(biāo)(訓(xùn)練和驗(yàn)證數(shù)據(jù))、圖像(來(lái)自數(shù)據(jù)集)、超參數(shù)調(diào)優(yōu)等,它非常強(qiáng)大。

用于可視化自定義模型的模型圖

此選項(xiàng)尤其有助于以協(xié)議緩沖區(qū)的形式接收自定義模型,并且在進(jìn)行任何修改或訓(xùn)練之前需要了解它。如下圖所示,在電路板上可視化了順序 CNN 的概述。每個(gè)塊代表一個(gè)單獨(dú)的圖層,選擇其中一個(gè)塊將在右上角打開(kāi)一個(gè)窗口,其中包含輸入和輸出信息。

如果需要進(jìn)一步的信息,關(guān)于各個(gè)塊內(nèi)的內(nèi)容,只需雙擊塊,這將展開(kāi)塊并提供更多詳細(xì)信息。請(qǐng)注意,一個(gè)塊可以包含一個(gè)或多個(gè)塊,這些塊可以逐層擴(kuò)展。選擇任何特定操作時(shí),它還將提供有關(guān)相關(guān)處理參數(shù)的更多信息。

用于分析模型訓(xùn)練和驗(yàn)證的標(biāo)量和指標(biāo)

機(jī)器學(xué)習(xí)的第二個(gè)重要方面是分析給定模型的訓(xùn)練和驗(yàn)證。從精度和速度的角度來(lái)看,性能對(duì)于使其適用于現(xiàn)實(shí)生活中的實(shí)際應(yīng)用非常重要。在下圖中,可以看出模型的準(zhǔn)確性隨著周期/迭代次數(shù)的增加而提高。如果訓(xùn)練和測(cè)試驗(yàn)證不符合標(biāo)準(zhǔn),則表明某些內(nèi)容不正確。這可能是欠擬合或過(guò)度擬合的情況,可以通過(guò)修改圖層/參數(shù)或改進(jìn)數(shù)據(jù)集或兩者來(lái)糾正。

圖像數(shù)據(jù),用于可視化數(shù)據(jù)集中的圖像

顧名思義,它有助于可視化圖像。它不僅限于可視化數(shù)據(jù)集中的圖像,而且還以圖像的形式顯示混淆矩陣。此矩陣表示檢測(cè)各個(gè)類(lèi)對(duì)象的準(zhǔn)確性。如下圖所示,該模型將外套與套頭衫混淆了。為了克服這種情況,建議改進(jìn)特定類(lèi)的數(shù)據(jù)集,以便為模型提供可區(qū)分的特征,以便更好地學(xué)習(xí),從而提高準(zhǔn)確性。

超參數(shù)調(diào)優(yōu),以實(shí)現(xiàn)所需的模型精度

模型的準(zhǔn)確性取決于輸入數(shù)據(jù)集、層數(shù)和相關(guān)參數(shù)。在大多數(shù)情況下,在初始訓(xùn)練期間,精度永遠(yuǎn)不會(huì)達(dá)到預(yù)期的精度,并且除了數(shù)據(jù)集之外,還需要考慮層數(shù)、層類(lèi)型、相關(guān)參數(shù)。此過(guò)程稱(chēng)為超參數(shù)優(yōu)化。

在此過(guò)程中,提供了一系列超參數(shù)供模型選擇,并且使用這些參數(shù)的組合運(yùn)行模型。每個(gè)組合的準(zhǔn)確性都會(huì)記錄在電路板上并可視化。它糾正了手動(dòng)訓(xùn)練模型所消耗的工作量和時(shí)間,這些工作和時(shí)間將針對(duì)超參數(shù)的每個(gè)可能組合進(jìn)行。

用于分析模型處理速度的分析工具

除了準(zhǔn)確性之外,處理速度是任何模型同樣重要的方面。有必要分析單個(gè)塊消耗的處理時(shí)間,以及是否可以通過(guò)進(jìn)行一些修改來(lái)減少處理時(shí)間。分析工具提供了具有不同時(shí)期的每個(gè)操作所消耗的時(shí)間的圖形表示。通過(guò)這種可視化,人們可以輕松查明消耗更多時(shí)間的操作。一些已知的開(kāi)銷(xiāo)可能是調(diào)整輸入大小,從Python轉(zhuǎn)換模型代碼,或者在CPU而不是GPU中運(yùn)行代碼。處理好這些事情將有助于實(shí)現(xiàn)最佳性能。

總的來(lái)說(shuō),TensorBoard是一個(gè)很好的工具,有助于開(kāi)發(fā)和訓(xùn)練過(guò)程。來(lái)自標(biāo)量和指標(biāo)、圖像數(shù)據(jù)和超參數(shù)優(yōu)化的數(shù)據(jù)有助于提高準(zhǔn)確性,而分析工具有助于提高處理速度。TensorBoard還有助于減少所涉及的調(diào)試時(shí)間,否則這肯定會(huì)是一個(gè)很大的時(shí)間框架。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 電路板
    +關(guān)注

    關(guān)注

    140

    文章

    5249

    瀏覽量

    106340
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8540

    瀏覽量

    136200
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    超小型Neuton機(jī)器學(xué)習(xí)模型, 在任何系統(tǒng)級(jí)芯片(SoC)上解鎖邊緣人工智能應(yīng)用.

    Neuton 是一家邊緣AI 公司,致力于讓機(jī)器 學(xué)習(xí)模型更易于使用。它創(chuàng)建的模型比競(jìng)爭(zhēng)對(duì)手的框架小10 倍,速度也快10 倍,甚至可以在最先進(jìn)的邊緣設(shè)備上進(jìn)行人工智能處理。在這篇博文
    發(fā)表于 07-31 11:38

    FPGA在機(jī)器學(xué)習(xí)中的具體應(yīng)用

    隨著機(jī)器學(xué)習(xí)和人工智能技術(shù)的迅猛發(fā)展,傳統(tǒng)的中央處理單元(CPU)和圖形處理單元(GPU)已經(jīng)無(wú)法滿(mǎn)足高效處理大規(guī)模數(shù)據(jù)和復(fù)雜模型的需求。FPGA(現(xiàn)場(chǎng)可編程門(mén)陣列)作為一種靈活且高效的硬件加速平臺(tái)
    的頭像 發(fā)表于 07-16 15:34 ?2608次閱讀

    通過(guò)NVIDIA Cosmos模型增強(qiáng)機(jī)器人學(xué)習(xí)

    通用機(jī)器人的時(shí)代已經(jīng)到來(lái),這得益于機(jī)械電子技術(shù)和機(jī)器人 AI 基礎(chǔ)模型的進(jìn)步。但目前機(jī)器人技術(shù)的發(fā)展仍面臨一個(gè)關(guān)鍵挑戰(zhàn):機(jī)器人需要大量的訓(xùn)練
    的頭像 發(fā)表于 07-14 11:49 ?740次閱讀
    通過(guò)NVIDIA Cosmos<b class='flag-5'>模型</b>增強(qiáng)<b class='flag-5'>機(jī)器人學(xué)習(xí)</b>

    模型在半導(dǎo)體行業(yè)的應(yīng)用可行性分析

    的應(yīng)用,比如使用機(jī)器學(xué)習(xí)分析數(shù)據(jù),提升良率。 這一些大模型是否真的有幫助 能夠在解決工程師的知識(shí)斷層問(wèn)題 本人純小白,不知道如何涉足這方面 應(yīng)該問(wèn)什么大
    發(fā)表于 06-24 15:10

    邊緣計(jì)算中的機(jī)器學(xué)習(xí):基于 Linux 系統(tǒng)的實(shí)時(shí)推理模型部署與工業(yè)集成!

    你好,旅行者!歡迎來(lái)到Medium的這一角落。在本文中,我們將把一個(gè)機(jī)器學(xué)習(xí)模型(神經(jīng)網(wǎng)絡(luò))部署到邊緣設(shè)備上,利用從ModbusTCP寄存器獲取的實(shí)時(shí)數(shù)據(jù)來(lái)預(yù)測(cè)一臺(tái)復(fù)古音頻放大器的當(dāng)前健康狀況。你將
    的頭像 發(fā)表于 06-11 17:22 ?745次閱讀
    邊緣計(jì)算中的<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>:基于 Linux 系統(tǒng)的實(shí)時(shí)推理<b class='flag-5'>模型</b>部署與工業(yè)集成!

    國(guó)產(chǎn)地物光譜儀在“高光譜-機(jī)器學(xué)習(xí)模型構(gòu)建中的表現(xiàn)

    在遙感應(yīng)用和環(huán)境監(jiān)測(cè)日益精細(xì)化的今天,“高光譜 + 機(jī)器學(xué)習(xí)”的組合已成為地物識(shí)別、礦產(chǎn)探測(cè)、農(nóng)業(yè)監(jiān)測(cè)等領(lǐng)域的重要技術(shù)手段。而作為獲取高光譜數(shù)據(jù)的前端工具,地物光譜儀的性能直接影響到后續(xù)模型的精度
    的頭像 發(fā)表于 04-18 16:15 ?531次閱讀
    國(guó)產(chǎn)地物光譜儀在“高光譜-<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>”<b class='flag-5'>模型</b>構(gòu)建中的表現(xiàn)

    十大鮮為人知卻功能強(qiáng)大的機(jī)器學(xué)習(xí)模型

    本文轉(zhuǎn)自:QuantML當(dāng)我們談?wù)?b class='flag-5'>機(jī)器學(xué)習(xí)時(shí),線(xiàn)性回歸、決策樹(shù)和神經(jīng)網(wǎng)絡(luò)這些常見(jiàn)的算法往往占據(jù)了主導(dǎo)地位。然而,除了這些眾所周知的模型之外,還存在一些鮮為人知但功能強(qiáng)大的算法,它們能夠以驚人的效率
    的頭像 發(fā)表于 04-02 14:10 ?898次閱讀
    十大鮮為人知卻功能強(qiáng)大的<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>模型</b>

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長(zhǎng)以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 02-13 09:39 ?609次閱讀

    嵌入式機(jī)器學(xué)習(xí)的應(yīng)用特性與軟件開(kāi)發(fā)環(huán)境

    作者:DigiKey Editor 在許多嵌入式系統(tǒng)中,必須采用嵌入式機(jī)器學(xué)習(xí)(Embedded Machine Learning)技術(shù),這是指將機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 01-25 17:05 ?1188次閱讀
    嵌入式<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的應(yīng)用特性與軟件開(kāi)發(fā)環(huán)境

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】2.具身智能機(jī)器人大模型

    近年來(lái),人工智能領(lǐng)域的大模型技術(shù)在多個(gè)方向上取得了突破性的進(jìn)展,特別是在機(jī)器人控制領(lǐng)域展現(xiàn)出了巨大的潛力。在“具身智能機(jī)器人大模型”部分,作者研究并探討了大
    發(fā)表于 12-29 23:04

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】1.全書(shū)概覽與第一章學(xué)習(xí)

    非常感謝電子發(fā)燒友提供的這次書(shū)籍測(cè)評(píng)活動(dòng)!最近,我一直在學(xué)習(xí)模型和人工智能的相關(guān)知識(shí),深刻體會(huì)到機(jī)器人技術(shù)是一個(gè)極具潛力的未來(lái)方向,甚至可以說(shuō)是推動(dòng)時(shí)代變革的重要力量。能參與這次活動(dòng)并有機(jī)會(huì)深入
    發(fā)表于 12-27 14:50

    《具身智能機(jī)器人系統(tǒng)》第7-9章閱讀心得之具身智能機(jī)器人與大模型

    研讀《具身智能機(jī)器人系統(tǒng)》第7-9章,我被書(shū)中對(duì)大模型機(jī)器人技術(shù)融合的深入分析所吸引。第7章詳細(xì)闡述了ChatGPT for Robotics的核心技術(shù)創(chuàng)新:它摒棄了傳統(tǒng)的分層控制架
    發(fā)表于 12-24 15:03

    zeta在機(jī)器學(xué)習(xí)中的應(yīng)用 zeta的優(yōu)缺點(diǎn)分析

    在探討ZETA在機(jī)器學(xué)習(xí)中的應(yīng)用以及ZETA的優(yōu)缺點(diǎn)時(shí),需要明確的是,ZETA一詞在不同領(lǐng)域可能有不同的含義和應(yīng)用。以下是根據(jù)不同領(lǐng)域的ZETA進(jìn)行的分析: 一、ZETA在機(jī)器
    的頭像 發(fā)表于 12-20 09:11 ?1599次閱讀

    cmp在機(jī)器學(xué)習(xí)中的作用 如何使用cmp進(jìn)行數(shù)據(jù)對(duì)比

    機(jī)器學(xué)習(xí)領(lǐng)域,"cmp"這個(gè)術(shù)語(yǔ)可能并不是一個(gè)常見(jiàn)的術(shù)語(yǔ),它可能是指"比較"(comparison)的縮寫(xiě)。 比較在機(jī)器學(xué)習(xí)中的作用 模型
    的頭像 發(fā)表于 12-17 09:35 ?1308次閱讀

    構(gòu)建云原生機(jī)器學(xué)習(xí)平臺(tái)流程

    構(gòu)建云原生機(jī)器學(xué)習(xí)平臺(tái)是一個(gè)復(fù)雜而系統(tǒng)的過(guò)程,涉及數(shù)據(jù)收集、處理、特征提取、模型訓(xùn)練、評(píng)估、部署和監(jiān)控等多個(gè)環(huán)節(jié)。
    的頭像 發(fā)表于 12-14 10:34 ?668次閱讀