chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

PyTorch指定GPU進(jìn)行訓(xùn)練

jf_96884364 ? 來(lái)源:jf_96884364 ? 作者:jf_96884364 ? 2023-01-13 10:11 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

1 直接在終端中設(shè)定:

CUDA_VISIBLE_DEVICES=1 python main.py

2 python 代碼中設(shè)定:

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"

審核編輯 黃昊

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • python
    +關(guān)注

    關(guān)注

    57

    文章

    4861

    瀏覽量

    89671
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    813

    瀏覽量

    14736
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    AI硬件全景解析:CPU、GPU、NPU、TPU的差異化之路,一文看懂!?

    CPU作為“通用基石”,支撐所有設(shè)備的基礎(chǔ)運(yùn)行;GPU憑借并行算力,成為AI訓(xùn)練與圖形處理的“主力”;TPU在Google生態(tài)中深耕云端大模型訓(xùn)練;NPU則讓AI從“云端”走向“身邊”(手機(jī)、手表
    的頭像 發(fā)表于 12-17 17:13 ?499次閱讀
    AI硬件全景解析:CPU、<b class='flag-5'>GPU</b>、NPU、TPU的差異化之路,一文看懂!?

    NVIDIA Isaac Lab多GPU多節(jié)點(diǎn)訓(xùn)練指南

    NVIDIA Isaac Lab 是一個(gè)適用于機(jī)器人學(xué)習(xí)的開(kāi)源統(tǒng)一框架,基于 NVIDIA Isaac Sim 開(kāi)發(fā),其模塊化高保真仿真適用于各種訓(xùn)練環(huán)境,可提供各種物理 AI 功能和由 GPU 驅(qū)動(dòng)的物理仿真,縮小仿真與現(xiàn)實(shí)世界之間的差距。
    的頭像 發(fā)表于 09-23 17:15 ?2054次閱讀
    NVIDIA Isaac Lab多<b class='flag-5'>GPU</b>多節(jié)點(diǎn)<b class='flag-5'>訓(xùn)練</b>指南

    aicube的n卡gpu索引該如何添加?

    請(qǐng)問(wèn)有人知道aicube怎樣才能讀取n卡的gpu索引呢,我已經(jīng)安裝了cuda和cudnn,在全局的py里添加了torch,能夠調(diào)用gpu,當(dāng)還是只能看到默認(rèn)的gpu0,顯示不了gpu1
    發(fā)表于 07-25 08:18

    如何在Ray分布式計(jì)算框架下集成NVIDIA Nsight Systems進(jìn)行GPU性能分析

    在大語(yǔ)言模型的強(qiáng)化學(xué)習(xí)訓(xùn)練過(guò)程中,GPU 性能優(yōu)化至關(guān)重要。隨著模型規(guī)模不斷擴(kuò)大,如何高效地分析和優(yōu)化 GPU 性能成為開(kāi)發(fā)者面臨的主要挑戰(zhàn)之一。
    的頭像 發(fā)表于 07-23 10:34 ?2089次閱讀
    如何在Ray分布式計(jì)算框架下集成NVIDIA Nsight Systems<b class='flag-5'>進(jìn)行</b><b class='flag-5'>GPU</b>性能分析

    提升AI訓(xùn)練性能:GPU資源優(yōu)化的12個(gè)實(shí)戰(zhàn)技巧

    在人工智能與機(jī)器學(xué)習(xí)技術(shù)迅速發(fā)展的背景下,GPU計(jì)算資源的高效利用已成為關(guān)鍵技術(shù)指標(biāo)。優(yōu)化的GPU資源分配不僅能顯著提升模型訓(xùn)練速度,還能實(shí)現(xiàn)計(jì)算成本的有效控制。根據(jù)AI基礎(chǔ)設(shè)施聯(lián)盟2024年發(fā)布
    的頭像 發(fā)表于 05-06 11:17 ?1264次閱讀
    提升AI<b class='flag-5'>訓(xùn)練</b>性能:<b class='flag-5'>GPU</b>資源優(yōu)化的12個(gè)實(shí)戰(zhàn)技巧

    海思SD3403邊緣計(jì)算AI數(shù)據(jù)訓(xùn)練概述

    AI數(shù)據(jù)訓(xùn)練:基于用戶特定應(yīng)用場(chǎng)景,用戶采集照片或視頻,通過(guò)AI數(shù)據(jù)訓(xùn)練工程師**(用戶公司****員工)** ,進(jìn)行特征標(biāo)定后,將標(biāo)定好的訓(xùn)練樣本,通過(guò)AI
    發(fā)表于 04-28 11:11

    摩爾線程GPU原生FP8計(jì)算助力AI訓(xùn)練

    近日,摩爾線程正式開(kāi)源MT-MegatronLM與MT-TransformerEngine兩大AI框架。通過(guò)深度融合FP8混合訓(xùn)練策略和高性能算子庫(kù),這兩大框架在國(guó)產(chǎn)全功能GPU上實(shí)現(xiàn)了高效的混合
    的頭像 發(fā)表于 03-17 17:05 ?1281次閱讀
    摩爾線程<b class='flag-5'>GPU</b>原生FP8計(jì)算助力AI<b class='flag-5'>訓(xùn)練</b>

    使用OpenVINO? 2021.4將經(jīng)過(guò)訓(xùn)練的自定義PyTorch模型加載為IR格式時(shí)遇到錯(cuò)誤怎么解決?

    使用 OpenVINO? 2021.4 將經(jīng)過(guò)訓(xùn)練的自定義 PyTorch 模型加載為 IR 格式時(shí)遇到錯(cuò)誤: RuntimeError: [ GENERAL_ERROR ] Failed
    發(fā)表于 03-05 08:40

    壁仞科技支持DeepSeek-V3滿血版訓(xùn)練推理

    DeepSeek-V3滿血版在國(guó)產(chǎn)GPU平臺(tái)的高效全棧式訓(xùn)練與推理,實(shí)現(xiàn)國(guó)產(chǎn)大模型與國(guó)產(chǎn)GPU的深度融合優(yōu)化,開(kāi)啟國(guó)產(chǎn)算力新篇章。
    的頭像 發(fā)表于 03-04 14:01 ?1962次閱讀

    馬斯克揭秘Grok 3訓(xùn)練成本:20萬(wàn)塊英偉達(dá)GPU

    訓(xùn)練過(guò)程極為龐大且復(fù)雜,累計(jì)消耗了高達(dá)20萬(wàn)塊的英偉達(dá)GPU。這一數(shù)字不僅彰顯了Grok 3在算力方面的巨大需求,也反映了xAI公司在技術(shù)研發(fā)和數(shù)據(jù)中心建設(shè)方面的雄厚實(shí)力。 馬斯克表示,Grok 3的訓(xùn)練全部在xAI公司的數(shù)據(jù)
    的頭像 發(fā)表于 02-19 09:39 ?1207次閱讀

    操作指南:pytorch云服務(wù)器怎么設(shè)置?

    設(shè)置PyTorch云服務(wù)器需選擇云平臺(tái),創(chuàng)建合適的GPU實(shí)例,安裝操作系統(tǒng)、Python及Anaconda,創(chuàng)建虛擬環(huán)境,根據(jù)CUDA版本安裝PyTorch,配置環(huán)境變量,最后驗(yàn)證安裝。過(guò)程中需考慮
    的頭像 發(fā)表于 02-08 10:33 ?627次閱讀

    大模型訓(xùn)練框架(五)之Accelerate

    Hugging Face 的 Accelerate1是一個(gè)用于簡(jiǎn)化和加速深度學(xué)習(xí)模型訓(xùn)練的庫(kù),它支持在多種硬件配置上進(jìn)行分布式訓(xùn)練,包括 CPU、GPU、TPU 等。Accelerat
    的頭像 發(fā)表于 01-14 14:24 ?1827次閱讀

    GPU按需計(jì)費(fèi)的優(yōu)勢(shì)

    GPU按需計(jì)費(fèi),是指用戶根據(jù)實(shí)際使用的GPU資源和時(shí)間進(jìn)行費(fèi)用結(jié)算,而非傳統(tǒng)的一次性購(gòu)買或固定租賃模式。以下,是對(duì)GPU按需計(jì)費(fèi)優(yōu)勢(shì)的總結(jié),由AI部落小編整理。
    的頭像 發(fā)表于 01-14 10:43 ?665次閱讀

    利用Arm Kleidi技術(shù)實(shí)現(xiàn)PyTorch優(yōu)化

    PyTorch 是一個(gè)廣泛應(yīng)用的開(kāi)源機(jī)器學(xué)習(xí) (ML) 庫(kù)。近年來(lái),Arm 與合作伙伴通力協(xié)作,持續(xù)改進(jìn) PyTorch 的推理性能。本文將詳細(xì)介紹如何利用 Arm Kleidi 技術(shù)提升 Arm
    的頭像 發(fā)表于 12-23 09:19 ?1672次閱讀
    利用Arm Kleidi技術(shù)實(shí)現(xiàn)<b class='flag-5'>PyTorch</b>優(yōu)化