chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

使用 NVIDIA TAO Toolkit 5.0 體驗最新的視覺 AI 模型開發(fā)工作流程

NVIDIA英偉達 ? 來源:未知 ? 2023-07-31 20:45 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

NVIDIA TAO 工具套件提供了一個低代碼 AI 框架,無論是新手還是數(shù)據(jù)科學(xué)專家都可以使用這個平臺加速視覺 AI 模型開發(fā)。有了 TAO 工具套件,開發(fā)人員可以進行遷移學(xué)習(xí),通過適應(yīng)和優(yōu)化,在短時間內(nèi)達到最先進的精度和生產(chǎn)級吞吐量。

NVIDIA 發(fā)布了 NVIDIA TAO 套件 5.0 ,帶來了 AI 模型開發(fā)方面的突破性功能提升。新功能包括開源架構(gòu)、基于 Transformer 的預(yù)訓(xùn)練模型、AI 輔助的數(shù)據(jù)標注,以及在任何平臺上部署模型的能力。

發(fā)布亮點包括:

  • 以開放的 ONNX 格式導(dǎo)出模型,支持在 GPU、CPU、MCU、神經(jīng)加速器等設(shè)備上部署。

  • 先進的視覺 Transformer 訓(xùn)練,可提高準確性和魯棒性,防止圖像損壞和噪聲。

  • 新增 AI 輔助數(shù)據(jù)注釋,加快了分割掩碼的標記任務(wù)。

  • 支持例如光學(xué)字符檢測和連體網(wǎng)絡(luò)模型等用于光學(xué)檢測的新型計算機視覺任務(wù)和預(yù)訓(xùn)練模型。

  • 開放源代碼,可提供定制解決方案,加快開發(fā)和集成速度。

使用指南:

  • 訪問 TAO 工具套件入門頁面,查看教學(xué)視頻和快速入門指南。

  • 從 NGC 下載 TAO 工具套件和預(yù)訓(xùn)練模型。

df32fdc8-2f9e-11ee-9e74-dac502259ad0.png

圖 1:NVIDIA TAO 工具套件工作流程圖

在任何平臺、任何位置部署 NVIDIA TAO

NVIDIA TAO 工具套件 5.0 支持 ONNX 模型導(dǎo)出。無論是 GPU 、CPU 、MCU 、DLA 還是 FPGA 的邊緣或云上的任何計算平臺,都可以部署使用 NVIDIA TAO 工具套件訓(xùn)練的模型。NVIDIA TAO 工具套件簡化了模型訓(xùn)練過程,優(yōu)化了模型的推理吞吐量,為數(shù)千億臺設(shè)備的 AI 提供了動力。

df6000c0-2f9e-11ee-9e74-dac502259ad0.png

圖 2:NVIDIA TAO 工具套件體系

用于構(gòu)建、完善和部署機器學(xué)習(xí)模型和算法的平臺 Edge Impulse 將 TAO 工具套件集成到其邊緣 AI 平臺中。通過整合,Edge Impulse 現(xiàn)在可以提供先進的視覺 AI 功能和模型,并對其現(xiàn)有產(chǎn)品進行補充。開發(fā)者可以利用 TAO,使用該平臺為任何邊緣設(shè)備構(gòu)建生產(chǎn)型 AI。

視頻 1. 利用NVIDIATAO 并部署在Cortex-M7 MCU 上的

Edge Impulse 平臺訓(xùn)練 AI 模型

全球領(lǐng)先的嵌入式微控制器制造商意法半導(dǎo)體,將 TAO 集成到其 STM32Cube AI 開發(fā)者工作流程中。借助 TAO,該公司能夠在 STM32 微控制器驅(qū)動的各種物聯(lián)網(wǎng)和邊緣用例中,根據(jù)它們的最大算力和內(nèi)存運行各種復(fù)雜 AI 功能。

有了 NVIDIA TAO 工具套件,即使是 AI 新手也可以在微控制器的計算和內(nèi)存預(yù)算內(nèi)優(yōu)化和量化 AI 模型,使其在 STM32 MCU 上運行。開發(fā)人員還可以導(dǎo)入自己的模型,并使用 TAO 工具套件進行微調(diào)。有關(guān)這項工作的更多信息,請參閱下面的視頻。

訪問 GitHub 頁面https://github.com/STMicroelectronics/stm32ai-tao),了解更多關(guān)于意法半導(dǎo)體用例信息。

視頻 2: 了解如何在一個 STM 微控制器上

部署使用 TAO 工具套件優(yōu)化的模型

雖然 TAO 工具套件模型可以在任何平臺上運行,但這些模型在使用TensorRT進行推理的NVIDIA GPU上才能實現(xiàn)最高吞吐量。在 CPU 上,這些模型使用 ONNX-RT 進行推理。一旦軟件可用,將提供復(fù)制這些數(shù)字的腳本和配方。

df8ed7ce-2f9e-11ee-9e74-dac502259ad0.png

表 1:幾種 NVIDIA TAO 工具套件

視覺模型的性能比較(以 FPS 為單位),

包括 NVIDIA GPU 上的新視覺 Transformer 模型

AI 輔助的數(shù)據(jù)標注和管理

對于所有 AI 項目來說,數(shù)據(jù)標注仍然是一個昂貴且耗時的過程。對于 CV 任務(wù)尤其如此,比如需要在標注對象周圍生成像素級別分割掩碼的分割任務(wù)。通常,分割掩碼的成本是對象檢測或分類的 10 倍。

通過 TAO 工具套件 5.0 ,用最新的 AI 輔助標注功能對分割掩碼進行標注,速度更快,成本更低。現(xiàn)在,您可以使用弱監(jiān)督分割架構(gòu) Mask Auto Labeler (MAL)來輔助進行分割注釋,以及固定和收緊用于對象檢測的邊界框。實況數(shù)據(jù)中對象周圍的松散邊界框可能會導(dǎo)致非最佳檢測結(jié)果。但是,通過 AI 輔助標注,您可以將邊界框收緊到對象上,從而獲得更準確的模型。

圖 3:TAO 工具套件的自動標記

MAL 是一個基于 Transformer 的掩碼自動標注框架,用于僅使用方框標注的實例分割。MAL 將方框裁剪圖像作為輸入內(nèi)容,并有條件地生成掩碼偽標簽。它對輸入和輸出標簽都使用了 COCO 注釋格式。

MAL 顯著縮小了自動標注和人工標注在掩碼質(zhì)量方面的差距。使用 MAL 生成的掩碼訓(xùn)練的實例分割模型幾乎可以匹配全監(jiān)督對應(yīng)模型的性能,保留了高達 97.4% 的全監(jiān)督模型的性能。

wKgaomTYoA6AfMPhAANLayuwroU087.png

圖 4:MAL 網(wǎng)絡(luò)架構(gòu)

訓(xùn)練 MAL 網(wǎng)絡(luò)時,任務(wù)網(wǎng)絡(luò)和教師網(wǎng)絡(luò)(共享相同的轉(zhuǎn)換器結(jié)構(gòu))協(xié)同工作以實現(xiàn)與類無關(guān)的自我訓(xùn)練。這樣就可以優(yōu)化具有條件隨機場(CRF)損失和多實例學(xué)習(xí)(MIL)損失的預(yù)測掩碼。

TAO 工具套件在自動標注流程和數(shù)據(jù)擴充流程中都使用了 MAL 。具體而言,用戶可以在空間增強的圖像上生成偽掩碼(例如,剪切或旋轉(zhuǎn)),并使用生成的掩碼細化和收緊相應(yīng)的邊界框。

最先進的視覺 Transformer

Transformer 已經(jīng)成為 NLP 中的標準架構(gòu),這主要是因為自注意力架構(gòu),同時它們還因一系列視覺 AI 任務(wù)而廣受歡迎。一般來說,基于 Transformer 的模型因為具有魯棒性、可推廣性和對大規(guī)模輸入執(zhí)行并行處理的能力,會優(yōu)于傳統(tǒng)的基于 CNN 的模型。所有這些優(yōu)點都提高了訓(xùn)練效率,對圖像損壞和噪聲提供了更好的魯棒性,并對不可視的對象更好地進行泛化。

TAO 工具套件 5.0 為流行的 CV 任務(wù)提供了幾種最先進的(SOTA)視覺 Transformer ,具體如下。

全注意力網(wǎng)絡(luò)

全注意力網(wǎng)絡(luò)(FAN)是 NVIDIA Research 的一個基于 Transformer 的主干,它在抵御各種破壞方面實現(xiàn)了最優(yōu)的魯棒性。這類主干可以很容易地推廣到新的領(lǐng)域,并且對噪聲、模糊等更具魯棒性。

FAN 模塊背后的一個關(guān)鍵設(shè)計是注意力通道處理模塊,它可以實現(xiàn)穩(wěn)健的表征學(xué)習(xí)。FAN 可以用于圖像分類任務(wù)以及諸如對象檢測和分割之類的下游任務(wù)。

e232170c-2f9e-11ee-9e74-dac502259ad0.png

圖 5 :與 FAN Small (右)相比,

ResNet50 (中)損壞圖像的激活熱圖

FAN 系列支持四個主干,如表 2 所示。

e267b736-2f9e-11ee-9e74-dac502259ad0.png

表 2:具有尺寸和精度的 FAN 主干

全局視野視覺 Transformer

全局上下文視覺 Transformer(GC-ViT)是 NVIDIA Research 的一種新架構(gòu),可實現(xiàn)非常高的準確性和計算效率。GC-ViT 解決了視覺 Transformer 中缺乏誘導(dǎo)性偏差的問題 。通過使用局部自注意,它在 ImageNet 上使用較少的參數(shù)獲得了更好的結(jié)果。

局部自我注意與全局視野自我注意相結(jié)合,可以有效地模擬長距離和短距離的空間交互。圖 6 顯示了 GC-ViT 模型體系結(jié)構(gòu)。有關(guān)更多詳細信息,請參見 Global Context Vision Transformershttps://arxiv.org/pdf/2206.09959.pdf)。

wKgZomTYoC-AJpWHAALxzTBhoFU341.png

圖 6:GC-ViT 模型架構(gòu)

如表 3 所示,GC-ViT 家族包含六個主干,從 GC-ViT-xxTiny (計算效率高)到 GC-ViT-Large (非常準確)。GC-ViT 大型模型在 ImageNet-1K 數(shù)據(jù)集上可以實現(xiàn) 85.6 的 Top-1 精度,用于圖像分類任務(wù)。該體系結(jié)構(gòu)還可以用作其他 CV 任務(wù)的主干,如對象檢測、語義和實例分割。

e2c07ef2-2f9e-11ee-9e74-dac502259ad0.png

表 3:具有尺寸和精度的 GC-ViT 主干

DINO

DINO(具有改進去噪錨框的檢測 Transformer)是最新一代檢測 Transformer(DETR),達到了一個比上一代更快的訓(xùn)練收斂時間。Deformable DETR (D-DETR)至少需要 50 個 epochs 才能收斂,而 DINO 可以在 COCO 數(shù)據(jù)集上在 12 個 epochs 內(nèi)收斂。而且,與 D-DETR 相比,它還實現(xiàn)了更高的精度。

DINO 通過在訓(xùn)練期間去噪實現(xiàn)更快的收斂,這有助于提案生成階段的二分匹配過程。由于二分匹配的不穩(wěn)定性,類 DETR 模型的訓(xùn)練收斂速度較慢。二分匹配減少了對人工和計算繁重的 NMS 操作的需求。但是,它通常需要更多的訓(xùn)練,因為在二分匹配期間,不正確的基本事實也可以與預(yù)測相匹配。

為了解決這個問題, DINO 引入了有噪聲的正負真實框來處理“無對象”場景。因此,DINO 的訓(xùn)練收斂得非???。更多信息,請參閱 DINO: 帶有改進的去噪錨框的 DETR,可用于端到端對象檢測(https://arxiv.org/pdf/2203.03605.pdf)。

e2eb1aae-2f9e-11ee-9e74-dac502259ad0.png

圖 7:DINO 架構(gòu)

TAO 工具套件中的 DINO 是靈活的,可以與傳統(tǒng)的 CNNs 主干(如 ResNets )和基于 Transformer 的主干(如 FAN 和 GC-ViT)相結(jié)合。表 4 顯示了在各種版本的 DINO 和常用的 YOLOv7 上 COCO 數(shù)據(jù)集的準確性。有關(guān)更多詳細信息,請參見 YOLOv7: 為實時物體檢測器設(shè)置了新的先進技術(shù)的可訓(xùn)練的免費套件(https://arxiv.org/pdf/2207.02696.pdf)。

e3193498-2f9e-11ee-9e74-dac502259ad0.png

表 4:COCO 數(shù)據(jù)集上的 DINO 和 D-DETR 準確性

SegFormer

SegFormer 是一種基于 Transformer 的輕量級語義分割方法。它的編碼器由輕量級 MLP 層制成,避免了使用位置編碼(主要由 Transformers 使用),這使得推理在不同分辨率下有效。

將 FAN 主干網(wǎng)添加到 SegFormer MLP 解碼器中會產(chǎn)生一個高度魯棒性和高效的語義分割模型。混合式 FAN-基站 + SegFormer 是 2022 年魯棒視覺挑戰(zhàn)大賽中語義分割項目的獲勝架構(gòu)。

e33996fc-2f9e-11ee-9e74-dac502259ad0.png

圖 8:具有 FAN 預(yù)測功能的 SegFormer (右)

其在噪音輸入時的一個圖像情況(左)

e38c7f16-2f9e-11ee-9e74-dac502259ad0.png

表 5:SegPreer 與 PSPNet 的魯棒性對比

在下面的視頻中,您將看到 SegFormer 如何保持加速自動駕駛汽車開發(fā)的高效率的同時,生成強魯棒性的語義分割。

視頻 3. NVIDIA DRIVE 實驗室片段,

關(guān)于提升自動駕駛汽車安全的 AI 分割模型

目標檢測和分割之外的 CV 任務(wù)

除了傳統(tǒng)對象檢測和分割,NVIDIA TAO 工具套件也加速了其他的各種 CV 任務(wù)。TAO 工具套件 5.0 中新增的字符檢測和識別模型使開發(fā)人員能夠從圖像和文檔中提取文本。文檔轉(zhuǎn)換實現(xiàn)了自動化,并加速了在保險和金融等行業(yè)的用例。

當被分類的對象變化很大時,檢測圖像中的異常是有用的,但不可能用所有的變化進行訓(xùn)練。例如,在工業(yè)檢測中,缺陷可以是任何形式的。如果訓(xùn)練數(shù)據(jù)之前沒有發(fā)現(xiàn)缺陷,那么使用簡單的分類器可能會導(dǎo)致許多遺漏的缺陷。

對于這樣的用例,將測試對象直接與黃金參考進行比較將獲得更好的準確性。TAO 工具套件 5.0 的特點是暹羅神經(jīng)網(wǎng)絡(luò),在該網(wǎng)絡(luò)中,模型計算出被測對象和黃金參考之間的差異,以便在對象有缺陷時進行分類。

使用 AutoML 實現(xiàn)超參數(shù)優(yōu)化的

自動化培訓(xùn)

自動化機器學(xué)習(xí)(AutoML)自動執(zhí)行手動任務(wù),即在給定數(shù)據(jù)集上查找所需 KPI 的最佳模型和超參數(shù)。它可以通過算法推導(dǎo)出最佳模型,并抽象出 AI 模型創(chuàng)建和優(yōu)化的大部分復(fù)雜性。

TAO 工具套件中的 AutoML 完全配置了用于自動優(yōu)化模型的超參數(shù)。無論是 AI 專家還是新手,都可以輕松使用。對于新手,Jupyter 使用指南提供了一種簡單且有效的創(chuàng)建準確的 AI 模型的方法。

對于專家來說,TAO 工具套件可讓您自由掌控要調(diào)整的超參數(shù)以及用于掃描的算法。TAO 工具套件目前支持兩種優(yōu)化算法:貝葉斯優(yōu)化和超參數(shù)優(yōu)化。這些算法可以掃描一系列超參數(shù),以找到給定數(shù)據(jù)集的最佳組合。

AutoML 支持多種 CV 任務(wù),包括一些新的視覺 Transformer,如 DINO、D-DETR、SegFormer 等。表 6 顯示了支持網(wǎng)絡(luò)的完整列表(標粗的項目是 TAO 工具套件 5.0 的新增項目)。

e3b8e6be-2f9e-11ee-9e74-dac502259ad0.png

表 6 :TAO 工具套件中 AutoML 支持的模型,

包括幾個新的視覺轉(zhuǎn)換器模型

(標粗的項目是 TAO 工具套件 5.0 的新項目)

用于工作流程集成的 REST API

TAO 工具套件是模塊化和云原生的,這意味著它可以作為容器使用,并且可以使用 Kubernetes 進行部署和管理。TAO 工具套件可以作為自管理服務(wù)部署在任何公共或私有云、DGX 或工作站上。此外 TAO 工具套件提供定義完善的 REST API,使其易于集成到您的開發(fā)工作流程中。開發(fā)人員可以調(diào)用 API 端點來執(zhí)行所有訓(xùn)練和優(yōu)化任務(wù)。這些 API 端點可以從任何應(yīng)用程序或用戶界面調(diào)用,然后通過遠程觸發(fā)進行訓(xùn)練作業(yè)。

e3d3031e-2f9e-11ee-9e74-dac502259ad0.png

圖 9:用于云原生部署的 TAO 工具套件架構(gòu)

更好的推理優(yōu)化方案

為了簡化產(chǎn)品化并提高推理吞吐量,TAO 工具套件提供了多種交鑰匙性能優(yōu)化技術(shù)。其中包括模型修剪、低精度量化和 TensorRT 優(yōu)化,與公共模型庫的同類模型相比,這些技術(shù)加起來可以提供一個 4 到 8 倍的性能提升。

e3fd5682-2f9e-11ee-9e74-dac502259ad0.png

圖 10:在各種 GPU 上優(yōu)化的 TAO 工具套件

和公共模型之間的性能比較

開放靈活,具有更好的支撐

因為 AI 模型是基于復(fù)雜的算法預(yù)測輸出的,這可能會使人們很難理解系統(tǒng)是如何做出決定的,并且很難調(diào)試、診斷和修復(fù)錯誤??山忉?a target="_blank">人工智能(XAI)通過解釋 AI 模型如何做出決策來應(yīng)對這些調(diào)整。這不僅有助于人類理解 AI 輸出背后的推理過程,也使診斷和修復(fù)錯誤變得更容易。這種透明度有助于建立對 AI 系統(tǒng)的信任。

為了提高透明度和可解釋性,TAO 工具套件將以開源形式提供。開發(fā)人員將能夠從內(nèi)部層查看特征圖,并繪制激活熱圖,以更好地理解人工智能預(yù)測背后的推理過程。此外,訪問源代碼將使開發(fā)人員能夠靈活地創(chuàng)建定制的 AI,提高調(diào)試能力,并增加對其模型的信任。

NVIDIA TAO 工具套件現(xiàn)已推出,可通過 NVIDIA AI Enterprise (NVAIE) 購買。NVAIE 為公司提供關(guān)鍵業(yè)務(wù)支持、NVIDIA AI 專家答疑以及優(yōu)先安全修復(fù)。了解 NVAIE (https://www.nvidia.com/en-us/data-center/products/ai-enterprise/)并獲得 AI 專家的指導(dǎo)。

與云服務(wù)集成

NVIDIA TAO 工具套件可以集成到您使用的各種 AI 服務(wù)中,如 Google Vertex AI、AzureML、Azure Kubernetes 服務(wù)、Google GKE 和 Amazon EKS。

e415d4b4-2f9e-11ee-9e74-dac502259ad0.png

圖 11:TAO 工具套件 5.0 與各種 AI 服務(wù)集成

總結(jié)

TAO 工具套件提供了一個平臺,任何開發(fā)者在任何服務(wù)、任何設(shè)備上都可以使用,可以輕松地遷移學(xué)習(xí)他們的自定義模型,執(zhí)行量化和修剪,管理復(fù)雜的訓(xùn)練工作流程,并在無需編碼的情況下執(zhí)行人工智能輔助注釋。

*為提供 TAO 工具套件 5.0 版本的準確信息,本文已在原版基礎(chǔ)上進行了修訂。

點擊“閱讀原文”,或掃描下方海報二維碼,在 8 月 8日聆聽NVIDIA 創(chuàng)始人兼 CEO 黃仁勛在 SIGGRAPH 現(xiàn)場發(fā)表的 NVIDIA 主題演講,了解 NVIDIA 的新技術(shù),包括屢獲殊榮的研究,OpenUSD 開發(fā),以及最新的 AI 內(nèi)容創(chuàng)作解決方案。


原文標題:使用 NVIDIA TAO Toolkit 5.0 體驗最新的視覺 AI 模型開發(fā)工作流程

文章出處:【微信公眾號:NVIDIA英偉達】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 英偉達
    +關(guān)注

    關(guān)注

    22

    文章

    3944

    瀏覽量

    93639

原文標題:使用 NVIDIA TAO Toolkit 5.0 體驗最新的視覺 AI 模型開發(fā)工作流程

文章出處:【微信號:NVIDIA_China,微信公眾號:NVIDIA英偉達】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    首創(chuàng)開源架構(gòu),天璣AI開發(fā)套件讓端側(cè)AI模型接入得心應(yīng)手

    的自有模型移植,使首字詞生態(tài)速度比云端方案提升70%,賦能絕影多模態(tài)智能座艙強大的端側(cè)運行能力,讓汽車擁有“有趣的靈魂”。 不僅如此,天璣AI開發(fā)套件已經(jīng)接入NVIDIA
    發(fā)表于 04-13 19:52

    NVIDIA 推出開放推理 AI 模型系列,助力開發(fā)者和企業(yè)構(gòu)建代理式 AI 平臺

    月 18 日 —— ?NVIDIA 今日發(fā)布具有推理功能的開源 Llama Nemotron 模型系列,旨在為開發(fā)者和企業(yè)提供業(yè)務(wù)就緒型基礎(chǔ),助力構(gòu)建能夠獨立工作或以團隊形式完成復(fù)雜
    發(fā)表于 03-19 09:31 ?232次閱讀
    <b class='flag-5'>NVIDIA</b> 推出開放推理 <b class='flag-5'>AI</b> <b class='flag-5'>模型</b>系列,助力<b class='flag-5'>開發(fā)</b>者和企業(yè)構(gòu)建代理式 <b class='flag-5'>AI</b> 平臺

    AI開發(fā)平臺模型怎么用

    AI開發(fā)平臺極大地簡化了AI應(yīng)用的開發(fā)流程,從環(huán)境搭建、模型訓(xùn)練到部署集成,每一步都提供了豐富的
    的頭像 發(fā)表于 02-11 09:53 ?331次閱讀

    NX CAD軟件:數(shù)字化工作流程解決方案(CAD工作流程)

    量身打造的工作流程解決方案。NXCAD工作流程解決方案ImmersiveEngineering航空航天開發(fā)與設(shè)計專為航空航天業(yè)的特定需求而量身打造的工作流程CAD解
    的頭像 發(fā)表于 02-06 18:15 ?426次閱讀
    NX CAD軟件:數(shù)字化<b class='flag-5'>工作流程</b>解決方案(CAD<b class='flag-5'>工作流程</b>)

    NVIDIA推出面向RTX AI PC的AI基礎(chǔ)模型

    NVIDIA 今日發(fā)布能在 NVIDIA RTX AI PC 本地運行的基礎(chǔ)模型,為數(shù)字人、內(nèi)容創(chuàng)作、生產(chǎn)力和開發(fā)提供強大助力。
    的頭像 發(fā)表于 01-08 11:01 ?543次閱讀

    NVIDIA推出多個生成式AI模型和藍圖

    NVIDIA 宣布推出多個生成式 AI 模型和藍圖,將 NVIDIA Omniverse 一體化進一步擴展至物理 AI 應(yīng)用,如機器人、自動
    的頭像 發(fā)表于 01-08 10:48 ?618次閱讀

    AI工作流自動化是做什么的

    AI工作流自動化是指利用人工智能技術(shù),對工作流程中的重復(fù)性、規(guī)則明確的任務(wù)進行自動化處理的過程。那么,AI工作流自動化是做什么的呢?接下來,
    的頭像 發(fā)表于 01-06 17:57 ?715次閱讀

    NVIDIA推出全新生成式AI模型Fugatto

    NVIDIA 開發(fā)了一個全新的生成式 AI 模型。利用輸入的文本和音頻,該模型可以創(chuàng)作出包含任意的音樂、人聲和聲音組合的作品。
    的頭像 發(fā)表于 11-27 11:29 ?811次閱讀

    NVIDIA RTX AI Toolkit擁抱LoRA技術(shù)

    在 RTX AI PC 和工作站上使用最新版 RTX AI Toolkit 微調(diào) LLM,最高可將性能提升至原來的 6 倍。
    的頭像 發(fā)表于 11-20 09:14 ?712次閱讀
    <b class='flag-5'>NVIDIA</b> RTX <b class='flag-5'>AI</b> <b class='flag-5'>Toolkit</b>擁抱LoRA技術(shù)

    NVIDIA發(fā)布全新AI和仿真工具以及工作流

    NVIDIA 在本周于德國慕尼黑舉行的機器人學(xué)習(xí)大會(CoRL)上發(fā)布了全新 AI 和仿真工具以及工作流。機器人開發(fā)者可以使用這些工具和工作流
    的頭像 發(fā)表于 11-09 11:52 ?889次閱讀

    NVIDIA NIM在搭載RTX技術(shù)的AI工作站上的應(yīng)用

    AI 計算資源的需求正不斷增長。從概念驗證到企業(yè)部署需要針對生成性 AI 工作負載進行優(yōu)化的強大計算基礎(chǔ)設(shè)施。同時,AI 開發(fā)項目需要更多的
    的頭像 發(fā)表于 11-09 11:47 ?781次閱讀

    使用全新NVIDIA AI Blueprint開發(fā)視覺AI智能體

    為提高生產(chǎn)力、優(yōu)化流程和創(chuàng)造更加安全的空間,埃森哲、戴爾科技和聯(lián)想等公司正在使用全新 NVIDIA AI Blueprint 開發(fā)視覺
    的頭像 發(fā)表于 11-06 13:58 ?1035次閱讀

    全新NVIDIA AI工作流可檢測信用卡欺詐交易

    工作流由 AWS 上 的 NVIDIA AI 平臺驅(qū)動,可幫助金融服務(wù)機構(gòu)節(jié)省資金并降低風(fēng)險。
    的頭像 發(fā)表于 10-30 11:41 ?819次閱讀

    借助NVIDIA Metropolis微服務(wù)構(gòu)建視覺AI應(yīng)用

    伴隨著視覺 AI 復(fù)雜性的增加,精簡的部署解決方案已成為優(yōu)化空間和流程的關(guān)鍵。NVIDIA 能夠加快企業(yè)的開發(fā)速度,借助
    的頭像 發(fā)表于 09-09 09:46 ?769次閱讀
    借助<b class='flag-5'>NVIDIA</b> Metropolis微服務(wù)構(gòu)建<b class='flag-5'>視覺</b><b class='flag-5'>AI</b>應(yīng)用

    NVIDIA RTX AI套件簡化AI驅(qū)動的應(yīng)用開發(fā)

    NVIDIA 于近日發(fā)布 NVIDIA RTX AI套件,這一工具和 SDK 集合能夠幫助 Windows 應(yīng)用開發(fā)者定制、優(yōu)化和部署適用于 Windows 應(yīng)用的
    的頭像 發(fā)表于 09-06 14:45 ?872次閱讀