chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

卷積神經網絡通俗理解

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-17 16:30 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經網絡通俗理解

卷積神經網絡,英文名為Convolutional Neural Network,成為了當前深度學習領域最重要的算法之一,也是很多圖像和語音領域任務中最常用的深度學習模型之一。本文將從通俗易懂的角度介紹卷積神經網絡,讓大家更好地理解這個重要的算法。

卷積神經網絡的概念

在介紹卷積神經網絡之前,先來看看卷積操作,因為卷積神經網絡就是以卷積操作為基礎的。

卷積操作是一種數(shù)學上的操作,它可以將兩個函數(shù)f和g產生第三個函數(shù)h。在機器學習中,我們通常使用卷積來實現(xiàn)特征提取。例如,我們可以使用卷積來識別圖片中的邊緣等。

卷積操作可以用公式表示為:

h[n] = (f * g)[n] = ∑f[k] * g[n-k]

其中,f和g是兩個長度為N的序列,h是長度為N的序列。卷積操作的核心就是使用g去乘以f的部分元素并做加和,以此生成h的每個元素。

卷積神經網絡使用卷積操作來計算不同的卷積層,從原始的輸入數(shù)據(jù)中提取出特征。接著,它們在全連接層中進行分類,從而產生輸出。卷積神經網絡通常還包括池化層,以使網絡具有更好的魯棒性。

卷積神經網絡的重要性

卷積神經網絡之所以變得如此重要,是因為它在計算機視覺和圖像識別任務中取得了驚人的成功。卷積神經網絡使用卷積核來從輸入圖像中提取出與任務相關的特征。這些特征是網絡中的一個重要層,神經網絡依靠這些特征學習來確定最后的分類結果。這些特定的特征是有意義的,例如在物體識別任務中,它們可以是特定顏色的形狀、邊緣、紋理或組合的組合。

實際的卷積神經網絡通常由多個卷積層,池化層和全連接層組成。卷積層是整個神經網絡中最重要的部分,它可以用來進行特征提取。池化層是一種降低特征圖維度的技術,這個層通常用于減少計算量并生成具有平移不變性的圖像。全連接層用于分類,輸出概率。

卷積神經網絡的應用

卷積神經網絡在許多領域都得到了廣泛應用。下面介紹一些常見的應用:

1. 圖像識別

卷積神經網絡可以對圖像進行高效的分類,它能夠學會圖像的特征,如邊緣,文理,紋理等。這使得卷積神經網絡成為圖像識別領域的首選模型。

2. 語音識別

卷積神經網絡還可以用于語音識別領域。語音識別的難點在于將聲音信號轉換為文本信息。卷積神經網絡可以從聲音信號中提取語音特征,然后將其轉換為文本。

3. 自然語言處理

卷積神經網絡也可以用于自然語言處理領域。在這方面,卷積神經網絡通常用于對文本進行分類、情感分析等。

總結

在這篇文章中,我們介紹了卷積神經網絡的概念、重要性和應用。卷積神經網絡作為一種深度學習的算法,它可以很好地處理圖像、語音和文本等領域的任務。我們希望本文能夠讓您更好地理解卷積神經網絡,并在實際應用中取得更好的結果。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 深度學習
    +關注

    關注

    73

    文章

    5589

    瀏覽量

    123884
  • 卷積神經網絡

    關注

    4

    文章

    371

    瀏覽量

    12708
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    自動駕駛中常提的卷積神經網絡是個啥?

    在自動駕駛領域,經常會聽到卷積神經網絡技術。卷積神經網絡,簡稱為CNN,是一種專門用來處理網格狀數(shù)據(jù)(比如圖像)的深度學習模型。CNN在圖像處理中尤其常見,因為圖像本身就可以看作是由像
    的頭像 發(fā)表于 11-19 18:15 ?1815次閱讀
    自動駕駛中常提的<b class='flag-5'>卷積</b><b class='flag-5'>神經網絡</b>是個啥?

    CNN卷積神經網絡設計原理及在MCU200T上仿真測試

    數(shù)的提出很大程度的解決了BP算法在優(yōu)化深層神經網絡時的梯度耗散問題。當x&gt;0 時,梯度恒為1,無梯度耗散問題,收斂快;當x&lt;0 時,該層的輸出為0。 CNN
    發(fā)表于 10-29 07:49

    NMSIS神經網絡庫使用介紹

    :   神經網絡卷積函數(shù)   神經網絡激活函數(shù)   全連接層函數(shù)   神經網絡池化函數(shù)   Softmax 函數(shù)   神經網絡支持功能
    發(fā)表于 10-29 06:08

    卷積運算分析

    的數(shù)據(jù),故設計了ConvUnit模塊實現(xiàn)單個感受域規(guī)模的卷積運算. 卷積運算:不同于數(shù)學當中提及到的卷積概念,CNN神經網絡中的卷積嚴格意義
    發(fā)表于 10-28 07:31

    在Ubuntu20.04系統(tǒng)中訓練神經網絡模型的一些經驗

    模型。 我們使用MNIST數(shù)據(jù)集,訓練一個卷積神經網絡(CNN)模型,用于手寫數(shù)字識別。一旦模型被訓練并保存,就可以用于對新圖像進行推理和預測。要使用生成的模型進行推理,可以按照以下步驟進行操作: 1.
    發(fā)表于 10-22 07:03

    CICC2033神經網絡部署相關操作

    讀取。接下來需要使用擴展指令,完成神經網絡的部署,此處僅對第一層卷積+池化的部署進行說明,其余層與之類似。 1.使用 Custom_Dtrans 指令,將權重數(shù)據(jù)、輸入數(shù)據(jù)導入硬件加速器內。對于權重
    發(fā)表于 10-20 08:00

    液態(tài)神經網絡(LNN):時間連續(xù)性與動態(tài)適應性的神經網絡

    1.算法簡介液態(tài)神經網絡(LiquidNeuralNetworks,LNN)是一種新型的神經網絡架構,其設計理念借鑒自生物神經系統(tǒng),特別是秀麗隱桿線蟲的神經結構,盡管這種微生物的
    的頭像 發(fā)表于 09-28 10:03 ?649次閱讀
    液態(tài)<b class='flag-5'>神經網絡</b>(LNN):時間連續(xù)性與動態(tài)適應性的<b class='flag-5'>神經網絡</b>

    卷積神經網絡如何監(jiān)測皮帶堵料情況 #人工智能

    卷積神經網絡
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    BP神經網絡卷積神經網絡的比較

    BP神經網絡卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP神經網絡是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?1284次閱讀

    如何優(yōu)化BP神經網絡的學習率

    優(yōu)化BP神經網絡的學習率是提高模型訓練效率和性能的關鍵步驟。以下是一些優(yōu)化BP神經網絡學習率的方法: 一、理解學習率的重要性 學習率決定了模型參數(shù)在每次迭代時更新的幅度。過大的學習率可能導致模型在
    的頭像 發(fā)表于 02-12 15:51 ?1405次閱讀

    BP神經網絡的優(yōu)缺點分析

    BP神經網絡(Back Propagation Neural Network)作為一種常用的機器學習模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經網絡優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?1531次閱讀

    什么是BP神經網絡的反向傳播算法

    BP神經網絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經網絡的有效方法。以下是關于BP神經網絡的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?1259次閱讀

    BP神經網絡與深度學習的關系

    BP神經網絡與深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經網絡的基本概念 BP神經網絡,即反向傳播神經網絡(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1328次閱讀

    BP神經網絡的基本原理

    BP神經網絡(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個核心過程。以下是關于BP神經網絡基本原理的介紹: 一、網絡結構 BP神經網絡
    的頭像 發(fā)表于 02-12 15:13 ?1490次閱讀

    人工神經網絡的原理和多種神經網絡架構方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經網絡的原理和多種神經網絡架構方法,供各位老師選擇。 01 人工神經網絡 ? 人工神經網絡模型之所
    的頭像 發(fā)表于 01-09 10:24 ?2224次閱讀
    人工<b class='flag-5'>神經網絡</b>的原理和多種<b class='flag-5'>神經網絡</b>架構方法