chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

兼容OpenVINO?及各類預(yù)訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)模型的高性能開發(fā)板

研揚(yáng)科技AAEON ? 2023-09-04 16:22 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

作為研揚(yáng)UP Squared Pro系列的第三代產(chǎn)品,UP Squared Pro 7000通過高性能計算能力、升級的電路板設(shè)計和擴(kuò)展的顯示接口,提供更大的開發(fā)潛力。

060beb3a-4afc-11ee-a20b-92fbcf53809c.jpg

作為該系列中首款采用Intel Core/Atom/N系列處理器(代號為 Alder Lake-N)的產(chǎn)品,UP Squared Pro 7000是首款配備板載LPDDR5內(nèi)存的產(chǎn)品,提高了I/O的運(yùn)行速度。此外,UP Squared Pro 7000在圖像處理和顯示功能方面都有顯著提升,支持MIPI CSI照相機(jī),并搭配Intel UHD顯卡,可同時連接三臺4K顯示器。

功 能 特 點(diǎn)

1.4倍以上CPU性能提升

UP Squared Pro 7000

UP Squared Pro 7000采用Intel Core/Atom/N-系列處理器,CPU性能是上一代的1.4倍。UP Squared Pro 7000擁有多達(dá)8個Gracemont內(nèi)核,支持Intel Distribution of OpenVINO Toolkit,以及第12代Intel處理器的UHD顯卡,擁有強(qiáng)大的計算能力、優(yōu)化的推理引擎和圖像處理功能,提供絕佳的智能解決方案。

同步支持3臺4K顯示器

UP Squared Pro 7000

UP Squared Pro 7000配備HDMI 2.0b、DP 1.2端口和通過USB Type-C的DP 1.4a,擁有出色的顯示接口。UP Squared Pro 7000整合了GPU和多重輸出,可以同步支持三個4K顯示器,非常適合用于數(shù)字廣告牌等視覺導(dǎo)向型的相關(guān)應(yīng)用。

雙倍的高速系統(tǒng)內(nèi)存

UP Squared Pro 7000

作為UP Squared Pro系列中第一塊配備板載LPDDR5系統(tǒng)內(nèi)存的板卡,UP Squared Pro 7000搭載了16GB的系統(tǒng)內(nèi)存,是上一代的兩倍。此外,快達(dá)4800MHz的內(nèi)存速度讓用戶的帶寬和數(shù)據(jù)傳輸速度加倍,同時也更加省電。

全面的I/O升級

UP Squared Pro 7000

除了維持UP Squared Pro系列4" x 4"的緊湊外形之外,UP Squared Pro 7000在電路板設(shè)計上更為精實(shí)。UP Squared Pro 7000配備了兩個2.5GbE、三個 USB 3.2和一個 FPC 端口,可外接更多像是MIPI CSI 相機(jī)的外圍設(shè)備。將這些特色與板載LPDDR5及性能強(qiáng)大的CPU相結(jié)合,非常適合用于智慧工廠機(jī)器人方面的視覺解決方案。

產(chǎn) 品 簡 介

07917e5c-4afc-11ee-a20b-92fbcf53809c.jpg07a959aa-4afc-11ee-a20b-92fbcf53809c.jpg07c9e1ca-4afc-11ee-a20b-92fbcf53809c.jpg07d901c8-4afc-11ee-a20b-92fbcf53809c.jpg07f2c82e-4afc-11ee-a20b-92fbcf53809c.jpg

Intel Atom x7000E系列,Intel處理器N系列 和Intel Core i3-N305處理器(代號為Alder Lake N)

板載LPDDR5內(nèi)存,最大支持16GB

板載eMMC內(nèi)存,最大支持64GB

2.5GbE x 2 (Inteli226-IT)

USB 3.2 x 3 (Type A x 2, Type C x 1)

40針GPIO x 1

DP 1.2 x 1 / DP 1.4a x 1 / HDMI 2.0b

RS232 / 422 / 485 wafer連接器 x 2

M.2 2230 E-Key / M.2 2280 M-Key / M.2 3052 B-Key x 1

SATA3 x 1

TPM 2.0

12V直流輸入,6A

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 電路板
    +關(guān)注

    關(guān)注

    140

    文章

    5201

    瀏覽量

    105494
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4819

    瀏覽量

    106057
  • 網(wǎng)絡(luò)
    +關(guān)注

    關(guān)注

    14

    文章

    8022

    瀏覽量

    92206
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3610

    瀏覽量

    51426
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真模型解決方案

    在基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真(DPD)模型中,使用不同的激活函數(shù)對整個系統(tǒng)性能和能效有何影響?
    的頭像 發(fā)表于 08-29 14:01 ?2750次閱讀

    無刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實(shí)現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進(jìn)遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)
    發(fā)表于 06-25 13:06

    為什么無法使用Dla_compiler在OpenVINO?中編譯用于FPGA的IR模型?

    導(dǎo)入了預(yù)訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型。 使用模型優(yōu)化器轉(zhuǎn)換為 IR 模型: mo --saved_mode
    發(fā)表于 03-05 06:00

    如何優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率

    優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率是提高模型訓(xùn)練效率和性能的關(guān)鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)率的方法: 一、理解學(xué)習(xí)率的重要性 學(xué)習(xí)率決定了
    的頭像 發(fā)表于 02-12 15:51 ?1260次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機(jī)器學(xué)習(xí)模型,具有顯著的優(yōu)點(diǎn),同時也存在一些不容忽視的缺點(diǎn)。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點(diǎn)的分析: 優(yōu)點(diǎn)
    的頭像 發(fā)表于 02-12 15:36 ?1271次閱讀

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化
    的頭像 發(fā)表于 02-12 15:15 ?1180次閱讀

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓(xùn)練過程主要分為兩個階段:前向傳播和反向傳播。以下是訓(xùn)練BP
    的頭像 發(fā)表于 02-12 15:10 ?1220次閱讀

    深度學(xué)習(xí)入門:簡單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實(shí)現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個簡單的神經(jīng)網(wǎng)絡(luò)。 神經(jīng)網(wǎng)絡(luò)由多個
    的頭像 發(fā)表于 01-23 13:52 ?710次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    所擬合的數(shù)學(xué)模型的形式受到大腦中神經(jīng)元的連接和行為的啟發(fā),最初是為了研究大腦功能而設(shè)計的。然而,數(shù)據(jù)科學(xué)中常用的神經(jīng)網(wǎng)絡(luò)作為大腦模型已經(jīng)過時,現(xiàn)在它們只是能夠在某些應(yīng)用中提供最先進(jìn)
    的頭像 發(fā)表于 01-09 10:24 ?1782次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    : TensorFlow是由Google Brain團(tuán)隊(duì)開發(fā)的開源機(jī)器學(xué)習(xí)框架,它支持多種深度學(xué)習(xí)模型的構(gòu)建和訓(xùn)練,包括卷積神經(jīng)網(wǎng)絡(luò)。Ten
    的頭像 發(fā)表于 11-15 15:20 ?929次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常
    的頭像 發(fā)表于 11-15 14:53 ?2248次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來在多個領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積
    的頭像 發(fā)表于 11-15 14:52 ?1071次閱讀

    基于哪吒開發(fā)板部署YOLOv8模型

    開發(fā)板的推理性能,同時測試所推出的 OpenVINO C# API (https://github.com/guojin-yan/OpenVINO-CSharp-API) 項(xiàng)目能否應(yīng)
    的頭像 發(fā)表于 11-15 14:13 ?1372次閱讀
    基于哪吒<b class='flag-5'>開發(fā)板</b>部署YOLOv8<b class='flag-5'>模型</b>

    LSTM神經(jīng)網(wǎng)絡(luò)訓(xùn)練數(shù)據(jù)準(zhǔn)備方法

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)訓(xùn)練數(shù)據(jù)準(zhǔn)備方法是一個關(guān)鍵步驟,它直接影響到模型性能和效果。以下是一些關(guān)于LSTM
    的頭像 發(fā)表于 11-13 10:08 ?2614次閱讀

    直播預(yù)約 |數(shù)據(jù)智能系列講座第4期:預(yù)訓(xùn)練的基礎(chǔ)模型下的持續(xù)學(xué)習(xí)

    ,特別是預(yù)訓(xùn)練的基礎(chǔ)模型研究得到了廣泛的應(yīng)用,但其仍然主要依賴于在大量樣本上的批量式訓(xùn)練。本報告將探討實(shí)現(xiàn)模型的增量式
    的頭像 發(fā)表于 10-18 08:09 ?815次閱讀
    直播預(yù)約 |數(shù)據(jù)智能系列講座第4期:<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>的基礎(chǔ)<b class='flag-5'>模型</b>下的持續(xù)學(xué)習(xí)