chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

兼容OpenVINO?及各類預訓練深度神經(jīng)網(wǎng)絡模型的高性能開發(fā)板

研揚科技AAEON ? 2023-09-04 16:22 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

作為研揚UP Squared Pro系列的第三代產品,UP Squared Pro 7000通過高性能計算能力、升級的電路板設計和擴展的顯示接口,提供更大的開發(fā)潛力。

060beb3a-4afc-11ee-a20b-92fbcf53809c.jpg

作為該系列中首款采用Intel Core/Atom/N系列處理器(代號為 Alder Lake-N)的產品,UP Squared Pro 7000是首款配備板載LPDDR5內存的產品,提高了I/O的運行速度。此外,UP Squared Pro 7000在圖像處理和顯示功能方面都有顯著提升,支持MIPI CSI照相機,并搭配Intel UHD顯卡,可同時連接三臺4K顯示器。

功 能 特 點

1.4倍以上CPU性能提升

UP Squared Pro 7000

UP Squared Pro 7000采用Intel Core/Atom/N-系列處理器,CPU性能是上一代的1.4倍。UP Squared Pro 7000擁有多達8個Gracemont內核,支持Intel Distribution of OpenVINO Toolkit,以及第12代Intel處理器的UHD顯卡,擁有強大的計算能力、優(yōu)化的推理引擎和圖像處理功能,提供絕佳的智能解決方案。

同步支持3臺4K顯示器

UP Squared Pro 7000

UP Squared Pro 7000配備HDMI 2.0b、DP 1.2端口和通過USB Type-C的DP 1.4a,擁有出色的顯示接口。UP Squared Pro 7000整合了GPU和多重輸出,可以同步支持三個4K顯示器,非常適合用于數(shù)字廣告牌等視覺導向型的相關應用。

雙倍的高速系統(tǒng)內存

UP Squared Pro 7000

作為UP Squared Pro系列中第一塊配備板載LPDDR5系統(tǒng)內存的板卡,UP Squared Pro 7000搭載了16GB的系統(tǒng)內存,是上一代的兩倍。此外,快達4800MHz的內存速度讓用戶的帶寬和數(shù)據(jù)傳輸速度加倍,同時也更加省電。

全面的I/O升級

UP Squared Pro 7000

除了維持UP Squared Pro系列4" x 4"的緊湊外形之外,UP Squared Pro 7000在電路板設計上更為精實。UP Squared Pro 7000配備了兩個2.5GbE、三個 USB 3.2和一個 FPC 端口,可外接更多像是MIPI CSI 相機的外圍設備。將這些特色與板載LPDDR5及性能強大的CPU相結合,非常適合用于智慧工廠機器人方面的視覺解決方案。

產 品 簡 介

07917e5c-4afc-11ee-a20b-92fbcf53809c.jpg07a959aa-4afc-11ee-a20b-92fbcf53809c.jpg07c9e1ca-4afc-11ee-a20b-92fbcf53809c.jpg07d901c8-4afc-11ee-a20b-92fbcf53809c.jpg07f2c82e-4afc-11ee-a20b-92fbcf53809c.jpg

Intel Atom x7000E系列,Intel處理器N系列 和Intel Core i3-N305處理器(代號為Alder Lake N)

板載LPDDR5內存,最大支持16GB

板載eMMC內存,最大支持64GB

2.5GbE x 2 (Inteli226-IT)

USB 3.2 x 3 (Type A x 2, Type C x 1)

40針GPIO x 1

DP 1.2 x 1 / DP 1.4a x 1 / HDMI 2.0b

RS232 / 422 / 485 wafer連接器 x 2

M.2 2230 E-Key / M.2 2280 M-Key / M.2 3052 B-Key x 1

SATA3 x 1

TPM 2.0

12V直流輸入,6A

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 電路板
    +關注

    關注

    140

    文章

    5136

    瀏覽量

    102632
  • 神經(jīng)網(wǎng)絡

    關注

    42

    文章

    4814

    瀏覽量

    103612
  • 網(wǎng)絡
    +關注

    關注

    14

    文章

    7815

    瀏覽量

    90960
  • 模型
    +關注

    關注

    1

    文章

    3521

    瀏覽量

    50421
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    如何優(yōu)化BP神經(jīng)網(wǎng)絡的學習率

    優(yōu)化BP神經(jīng)網(wǎng)絡的學習率是提高模型訓練效率和性能的關鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡學習率的方法: 一、理解學習率的重要性 學習率決定了
    的頭像 發(fā)表于 02-12 15:51 ?939次閱讀

    BP神經(jīng)網(wǎng)絡深度學習的關系

    ),是一種多層前饋神經(jīng)網(wǎng)絡,它通過反向傳播算法進行訓練。BP神經(jīng)網(wǎng)絡由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調整網(wǎng)絡權重,目的是最小化
    的頭像 發(fā)表于 02-12 15:15 ?860次閱讀

    如何訓練BP神經(jīng)網(wǎng)絡模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡是一種經(jīng)典的人工神經(jīng)網(wǎng)絡模型,其訓練過程主要分為兩個階段:前向傳播和反向傳播。以下是訓練BP
    的頭像 發(fā)表于 02-12 15:10 ?917次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法

    所擬合的數(shù)學模型的形式受到大腦中神經(jīng)元的連接和行為的啟發(fā),最初是為了研究大腦功能而設計的。然而,數(shù)據(jù)科學中常用的神經(jīng)網(wǎng)絡作為大腦模型已經(jīng)過時,現(xiàn)在它們只是能夠在某些應用中提供最先進
    的頭像 發(fā)表于 01-09 10:24 ?1189次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構方法

    卷積神經(jīng)網(wǎng)絡的實現(xiàn)工具與框架

    : TensorFlow是由Google Brain團隊開發(fā)的開源機器學習框架,它支持多種深度學習模型的構建和訓練,包括卷積神經(jīng)網(wǎng)絡。Ten
    的頭像 發(fā)表于 11-15 15:20 ?671次閱讀

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    深度學習領域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常
    的頭像 發(fā)表于 11-15 14:53 ?1870次閱讀

    深度學習中的卷積神經(jīng)網(wǎng)絡模型

    深度學習近年來在多個領域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡作為深度學習的一個分支,因其在圖像處理任務中的卓越性能而受到廣泛關注。 卷積
    的頭像 發(fā)表于 11-15 14:52 ?846次閱讀

    基于哪吒開發(fā)板部署YOLOv8模型

    開發(fā)板的推理性能,同時測試所推出的 OpenVINO C# API (https://github.com/guojin-yan/OpenVINO-CSharp-API) 項目能否應
    的頭像 發(fā)表于 11-15 14:13 ?1094次閱讀
    基于哪吒<b class='flag-5'>開發(fā)板</b>部署YOLOv8<b class='flag-5'>模型</b>

    LSTM神經(jīng)網(wǎng)絡訓練數(shù)據(jù)準備方法

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡訓練數(shù)據(jù)準備方法是一個關鍵步驟,它直接影響到模型性能和效果。以下是一些關于LSTM
    的頭像 發(fā)表于 11-13 10:08 ?2118次閱讀

    直播預約 |數(shù)據(jù)智能系列講座第4期:訓練的基礎模型下的持續(xù)學習

    ,特別是訓練的基礎模型研究得到了廣泛的應用,但其仍然主要依賴于在大量樣本上的批量式訓練。本報告將探討實現(xiàn)模型的增量式
    的頭像 發(fā)表于 10-18 08:09 ?593次閱讀
    直播預約 |數(shù)據(jù)智能系列講座第4期:<b class='flag-5'>預</b><b class='flag-5'>訓練</b>的基礎<b class='flag-5'>模型</b>下的持續(xù)學習

    【飛凌嵌入式OK3576-C開發(fā)板體驗】RKNN神經(jīng)網(wǎng)絡-車牌識別

    LPRNet基于深層神經(jīng)網(wǎng)絡設計,通過輕量級的卷積神經(jīng)網(wǎng)絡實現(xiàn)車牌識別。它采用端到端的訓練方式,不依賴字符分割,能夠直接處理整張車牌圖像,并輸出最終的字符序列。這種設計提高了識別的實時性和準確性
    發(fā)表于 10-10 16:40

    【飛凌嵌入式OK3576-C開發(fā)板體驗】RKNN神經(jīng)網(wǎng)絡算法開發(fā)環(huán)境搭建

    download_model.sh 腳本,該腳本 將下載一個可用的 YOLOv5 ONNX 模型,并存放在當前 model 目錄下,參考命令如下: 安裝COCO數(shù)據(jù)集,在深度神經(jīng)網(wǎng)絡算法中,
    發(fā)表于 10-10 09:28

    FPGA在深度神經(jīng)網(wǎng)絡中的應用

    隨著人工智能技術的飛速發(fā)展,深度神經(jīng)網(wǎng)絡(Deep Neural Network, DNN)作為其核心算法之一,在圖像識別、語音識別、自然語言處理等領域取得了顯著成果。然而,傳統(tǒng)的深度神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 07-24 10:42 ?1203次閱讀

    如何構建多層神經(jīng)網(wǎng)絡

    構建多層神經(jīng)網(wǎng)絡(MLP, Multi-Layer Perceptron)模型是一個在機器學習和深度學習領域廣泛使用的技術,尤其在處理分類和回歸問題時。在本文中,我們將深入探討如何從頭開始構建一個多層
    的頭像 發(fā)表于 07-19 17:19 ?1565次閱讀

    Python自動訓練人工神經(jīng)網(wǎng)絡

    人工神經(jīng)網(wǎng)絡(ANN)是機器學習中一種重要的模型,它模仿了人腦神經(jīng)元的工作方式,通過多層節(jié)點(神經(jīng)元)之間的連接和權重調整來學習和解決問題。Python由于其強大的庫支持(如Tenso
    的頭像 發(fā)表于 07-19 11:54 ?703次閱讀