chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度學(xué)習(xí)算法和傳統(tǒng)機(jī)器視覺(jué)助力工業(yè)外觀檢測(cè)

新機(jī)器視覺(jué) ? 來(lái)源:新機(jī)器視覺(jué) ? 2023-11-09 10:58 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在很多人眼里,深度學(xué)習(xí)是一個(gè)非常神奇的技術(shù),是人工智能的未來(lái),是機(jī)器學(xué)習(xí)的圣杯。今天深視創(chuàng)新帶您一起揭開(kāi)他神秘的面紗,了解什么才是深度學(xué)習(xí)。

當(dāng)我們?cè)诰W(wǎng)絡(luò)上搜索“深度學(xué)習(xí)”的時(shí)候往往還能搜到“人工智能”以及“機(jī)器學(xué)習(xí)”這兩個(gè)關(guān)鍵詞。有很多人甚至認(rèn)為深度學(xué)習(xí)就是人工智能,其實(shí)這些概念之間還是有一些區(qū)別的。因此,在介紹它的工作原理之前,為了讓大家更好的了解深度學(xué)習(xí),我們先來(lái)介紹一下這幾個(gè)概念之間的區(qū)別和聯(lián)系。

人工智能到目前為止還只是一個(gè)概念。它是由麻省理工學(xué)院的約翰·麥卡錫于1956年在達(dá)特矛斯會(huì)議上提出的。在會(huì)上人們把人工智能定義為一門(mén)可以讓機(jī)器的行為看起來(lái)像人一樣智能的技術(shù),但是至今為止我們還沒(méi)能實(shí)現(xiàn)這個(gè)夢(mèng)想。伴隨著隨著計(jì)算機(jī)技術(shù)的發(fā)展以及學(xué)者們不斷的探索,雖然我們目前無(wú)法實(shí)現(xiàn)理想中的人工智能,但已經(jīng)找到了一些實(shí)現(xiàn)它的途徑,那就是機(jī)器學(xué)習(xí)。機(jī)器學(xué)習(xí)不同于我們之前提到的理想中的人工智能。它可以使機(jī)器具有一定的決策能力。它是一種對(duì)已知數(shù)據(jù)進(jìn)行學(xué)習(xí)和分類(lèi)的分類(lèi)器。有人認(rèn)為這并不是真正的智能,于是人們把理想中的人工智能稱(chēng)為強(qiáng)人工智能,而相對(duì)的把機(jī)器學(xué)習(xí)稱(chēng)為弱人工智能。我們現(xiàn)在耳熟能詳?shù)纳疃葘W(xué)習(xí)則是一種實(shí)現(xiàn)機(jī)器學(xué)習(xí)的算法。所以從算法的角度上來(lái)說(shuō)深度學(xué)習(xí)只是一個(gè)分類(lèi)器而已。

深度學(xué)習(xí)的核心算法是CNN神經(jīng)網(wǎng)絡(luò),即卷積神經(jīng)網(wǎng)絡(luò)。這個(gè)網(wǎng)絡(luò)早在1989年就已經(jīng)問(wèn)世了,最初人們用它解決手寫(xiě)字符的識(shí)別問(wèn)題,但是受限于當(dāng)時(shí)計(jì)算機(jī)的硬件水平,其處理速度較慢,并沒(méi)有推廣到其他應(yīng)用領(lǐng)域。1999年GPU的問(wèn)世為卷積神經(jīng)網(wǎng)絡(luò)重回歷史舞臺(tái)提供了良好的條件。借助GPU高效的處理能力,卷積神經(jīng)網(wǎng)絡(luò)算法開(kāi)始走向應(yīng)用。它優(yōu)秀的分類(lèi)能力逐漸被各個(gè)應(yīng)用領(lǐng)域所認(rèn)可。而當(dāng)Alpha Go戰(zhàn)勝了圍棋冠軍李世石以后,人們對(duì)深度學(xué)習(xí)技術(shù)的期望更是達(dá)到了頂峰。但是我相信,很快人們就會(huì)發(fā)現(xiàn)深度學(xué)習(xí)只是我們目前掌握的一種新的非線性分類(lèi)器。它和其他分類(lèi)器一樣都需要通過(guò)訓(xùn)練才能夠?qū)崿F(xiàn)分類(lèi)的功能。比如通過(guò)水果圖像的訓(xùn)練,它就可以幫助我們判斷圖像中水果的種類(lèi)。

作為一個(gè)機(jī)器學(xué)習(xí)的分類(lèi)器,深度學(xué)習(xí)在很多特征模糊的分類(lèi)領(lǐng)域均有不錯(cuò)的表現(xiàn),比如在自動(dòng)駕駛和照片分類(lèi)等應(yīng)用領(lǐng)域。相比于其他的分類(lèi)器,深度學(xué)習(xí)不僅可以對(duì)圖像的特征進(jìn)行分類(lèi),還可以通過(guò)訓(xùn)練對(duì)圖像中的特征進(jìn)行學(xué)習(xí)。這種特性對(duì)于一些特征不易描述的圖像分類(lèi)任務(wù)是大有裨益的。

是什么給了深度學(xué)習(xí)如此大的神通呢?這就要從它所特有的卷積神經(jīng)網(wǎng)絡(luò)說(shuō)起了。

常用邊緣提取卷積算法。

3eccb7e6-7eab-11ee-939d-92fbcf53809c.png

卷積是一種積分變換的數(shù)學(xué)方法,在圖像處理中應(yīng)用廣泛。很多我們常用的圖像濾波器都是通過(guò)卷積實(shí)現(xiàn)的。比如使用3x3所有元素全為1的卷積核對(duì)圖像進(jìn)行運(yùn)算后可以去除圖像噪聲,突顯圖像整體特征。又比如使用高斯核對(duì)圖像進(jìn)行運(yùn)算可以在保留邊緣的情況下對(duì)圖像噪聲進(jìn)行抑制。此外許多我們熟知的邊緣提取算法也是由特定卷積核實(shí)現(xiàn)的,如canny,sobel,Laplace等。由此我們不難看出,不同的卷積核可以幫我們強(qiáng)化圖像中不同的特征。但是如何選擇正確的卷積核卻是一件非常困難的事情,需要擁有豐富圖像處理經(jīng)驗(yàn)的程序員才能辦到。而深度學(xué)習(xí)最大優(yōu)勢(shì)就在于可通過(guò)權(quán)值訓(xùn)練的方式對(duì)卷積核進(jìn)行訓(xùn)練。

輸入圖像經(jīng)過(guò)卷積、池化,再卷積再池化的過(guò)程,最后將所有圖像數(shù)據(jù)轉(zhuǎn)化為特征向量并輸入到全連接層獲得最終的分類(lèi)結(jié)果。

一個(gè)卷積神經(jīng)網(wǎng)絡(luò)可以擁有多個(gè)卷積層,不同的卷積層可以設(shè)置不同的卷積核尺寸和數(shù)目。通過(guò)卷積,我們可以生成一組特征圖像供后續(xù)算法使用。與圖像濾波處理不同的是,卷積核中的每一個(gè)元素并非人為指定,而是通過(guò)計(jì)算獲得。在這里我們將卷積核中的每個(gè)元素作為網(wǎng)絡(luò)的權(quán)值,并通過(guò)訓(xùn)練逐步修改它們。理論上來(lái)說(shuō),我們可以把圖像上的每個(gè)像素都作為一個(gè)特征值直接輸入到全連接層中,但是,那樣會(huì)導(dǎo)致神經(jīng)網(wǎng)絡(luò)太過(guò)復(fù)雜。于是我們采用卷積層這種共享權(quán)值的方式簡(jiǎn)化我們的網(wǎng)絡(luò)。我們所說(shuō)的權(quán)值共享,并不是指同一個(gè)卷積核中所有權(quán)值都相同,而是說(shuō)在對(duì)整張圖像進(jìn)行卷積的過(guò)程中卷積核是不變的,圖像中所有像素都享有相同卷積核權(quán)值。通過(guò)權(quán)值共享,可以降低網(wǎng)絡(luò)的訓(xùn)練負(fù)擔(dān),縮短分類(lèi)時(shí)間,使網(wǎng)絡(luò)更加實(shí)用。

一般,在卷積層的后面都會(huì)緊跟著一個(gè)池化層。在池化層中,特征圖像會(huì)被降采樣。降采樣的方法也有很多,比如選取指定范圍內(nèi)數(shù)值最大的特征或者使用該范圍所有特征的平均值作為新特征圖的特征值。

池化層可以幫助我們減少后續(xù)特征圖像的運(yùn)算量。此外,采樣處理相當(dāng)于變相縮小圖像,這也使得在后續(xù)的卷積層中對(duì)圖像概況訓(xùn)練成為可能。例如,在較淺的網(wǎng)絡(luò)中我們可以訓(xùn)練出類(lèi)似sobel的檢測(cè)指定邊緣方向的卷積核,而在較深層則能夠訓(xùn)練出凸顯折線或者其他形狀的卷積核。

在經(jīng)過(guò)一系列的卷積層和池化層后,特征數(shù)據(jù)會(huì)被送入全連接層進(jìn)行分類(lèi)。全連接層是一種被稱(chēng)為多層感知器(MLP)的非線性分類(lèi)器。它具有很好的非線性分類(lèi)能力。拋開(kāi)深度學(xué)習(xí)技術(shù)不談,這種分類(lèi)器也可以單獨(dú)使用,只不過(guò)輸入的特征需要人為提取,而不像卷積神經(jīng)網(wǎng)絡(luò)中由前面的網(wǎng)絡(luò)計(jì)算獲得。通過(guò)全連接層的分類(lèi),我們最終可以獲得樣本被分為所有類(lèi)別的概率,統(tǒng)計(jì)這些概率,我們就可以獲得最終的分類(lèi)結(jié)果。

通過(guò)上文的介紹,相信大家對(duì)卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)已經(jīng)有了一定的了解。從網(wǎng)絡(luò)的結(jié)構(gòu)上我們不難看出,卷積神經(jīng)網(wǎng)絡(luò)非常適合進(jìn)行模糊特征的分類(lèi),而合理的網(wǎng)絡(luò)結(jié)構(gòu)以及合適的參數(shù)是網(wǎng)絡(luò)能否成功分類(lèi)的關(guān)鍵。如果你想自己搭建網(wǎng)絡(luò),就要了解網(wǎng)絡(luò)中各層的用途以及相互作用關(guān)系,這需要一定的數(shù)學(xué)功底。當(dāng)然從應(yīng)用角度上來(lái)講,我們可以直接使用別人搭建好的網(wǎng)絡(luò)或者算法庫(kù),已縮短我們的研發(fā)周期。

文章來(lái)源:深視創(chuàng)新







審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:深度學(xué)習(xí)算法和傳統(tǒng)機(jī)器視覺(jué)結(jié)合,助力工業(yè)外觀檢測(cè)

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    【團(tuán)購(gòu)】獨(dú)家全套珍藏!龍哥LabVIEW視覺(jué)深度學(xué)習(xí)實(shí)戰(zhàn)可(11大系列課程,共5000+分鐘)

    %)為主要就業(yè)領(lǐng)域 本次團(tuán)購(gòu)?fù)ㄟ^(guò)整合11大系列課程,形成\"傳統(tǒng)視覺(jué)算法深度學(xué)習(xí)建模→工業(yè)級(jí)部
    發(fā)表于 12-03 13:50

    如何深度學(xué)習(xí)機(jī)器視覺(jué)的應(yīng)用場(chǎng)景

    深度學(xué)習(xí)視覺(jué)應(yīng)用場(chǎng)景大全 工業(yè)制造領(lǐng)域 復(fù)雜缺陷檢測(cè):處理傳統(tǒng)
    的頭像 發(fā)表于 11-27 10:19 ?28次閱讀

    思奧特智能機(jī)器視覺(jué)光源:以光為筆,繪就工業(yè)檢測(cè)新圖景

    在智能制造浪潮席卷全球的今天,工業(yè)檢測(cè)作為產(chǎn)品質(zhì)量的“守門(mén)人”,其重要性日益凸顯。而機(jī)器視覺(jué)光源,作為工業(yè)
    的頭像 發(fā)表于 11-21 09:16 ?49次閱讀
    思奧特智能<b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺(jué)</b>光源:以光為筆,繪就<b class='flag-5'>工業(yè)</b><b class='flag-5'>檢測(cè)</b>新圖景

    思奧特智能視覺(jué):構(gòu)建光源生態(tài)體系,賦能機(jī)器視覺(jué)全場(chǎng)景應(yīng)用

    在智能制造升級(jí)浪潮中,機(jī)器視覺(jué)技術(shù)正加速向高精度、高適應(yīng)性方向演進(jìn)。作為視覺(jué)系統(tǒng)的核心組件,光源的性能與集成能力直接影響檢測(cè)效率與精度。 思奧特視覺(jué)
    的頭像 發(fā)表于 11-17 14:20 ?89次閱讀

    機(jī)器視覺(jué)助力FPD 面板檢測(cè)

    FPD面板光學(xué)檢測(cè),需要在工業(yè)相機(jī)上使用圖像識(shí)別和檢測(cè)算法來(lái)檢測(cè)缺陷和異常。
    的頭像 發(fā)表于 09-26 16:09 ?431次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺(jué)</b><b class='flag-5'>助力</b>FPD 面板<b class='flag-5'>檢測(cè)</b>

    機(jī)器視覺(jué)檢測(cè)PIN針

    : 結(jié)合形態(tài)學(xué)處理、特征提?。ㄈ玳L(zhǎng)寬比、面積)及深度學(xué)習(xí)(針對(duì)復(fù)雜缺陷),自動(dòng)檢出彎曲、斷裂、變形、污染等。輸出與控制:實(shí)時(shí)顯示檢測(cè)結(jié)果(OK/NG)及具體參數(shù)數(shù)值。生成檢測(cè)報(bào)告,支持
    發(fā)表于 09-26 15:09

    如何在機(jī)器視覺(jué)中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    人士而言往往難以理解,人們也常常誤以為需要扎實(shí)的編程技能才能真正掌握并合理使用這項(xiàng)技術(shù)。事實(shí)上,這種印象忽視了該技術(shù)為機(jī)器視覺(jué)(乃至生產(chǎn)自動(dòng)化)帶來(lái)的潛力,因?yàn)?b class='flag-5'>深度學(xué)習(xí)并非只屬于計(jì)算機(jī)
    的頭像 發(fā)表于 09-10 17:38 ?666次閱讀
    如何在<b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺(jué)</b>中部署<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>神經(jīng)網(wǎng)絡(luò)

    地鐵隧道病害智能巡檢系統(tǒng)——機(jī)器視覺(jué)技術(shù)的深度應(yīng)用

    地鐵隧道滲漏水病害檢測(cè)智能系統(tǒng)通過(guò)分辨率視覺(jué)模組對(duì)地鐵隧道進(jìn)行高精度成像,并通過(guò)國(guó)際先進(jìn)的深度學(xué)習(xí)算法能夠在采集的圖像中自動(dòng)識(shí)別出滲漏水區(qū)域
    的頭像 發(fā)表于 08-29 15:50 ?333次閱讀
    地鐵隧道病害智能巡檢系統(tǒng)——<b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺(jué)</b>技術(shù)的<b class='flag-5'>深度</b>應(yīng)用

    機(jī)器視覺(jué)助力軌道缺陷檢測(cè)

    機(jī)器視覺(jué)檢測(cè)助力軌道檢測(cè)
    的頭像 發(fā)表于 05-21 16:55 ?585次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺(jué)</b><b class='flag-5'>助力</b>軌道缺陷<b class='flag-5'>檢測(cè)</b>

    【「# ROS 2智能機(jī)器人開(kāi)發(fā)實(shí)踐」閱讀體驗(yàn)】視覺(jué)實(shí)現(xiàn)的基礎(chǔ)算法的應(yīng)用

    : 一、機(jī)器視覺(jué):從理論到實(shí)踐 第7章詳細(xì)介紹了ROS2在機(jī)器視覺(jué)領(lǐng)域的應(yīng)用,涵蓋了相機(jī)標(biāo)定、OpenCV集成、視覺(jué)巡線、二維碼識(shí)別以及
    發(fā)表于 05-03 19:41

    行業(yè)首創(chuàng):基于深度學(xué)習(xí)視覺(jué)平臺(tái)的AI驅(qū)動(dòng)輪胎檢測(cè)自動(dòng)化

    全球領(lǐng)先的輪胎制造商 NEXEN TIRE 在其輪胎生產(chǎn)檢測(cè)過(guò)程中使用了基于友思特伙伴Neurocle開(kāi)發(fā)的AI深度學(xué)習(xí)視覺(jué)平臺(tái),實(shí)現(xiàn)缺陷檢測(cè)
    的頭像 發(fā)表于 03-19 16:51 ?770次閱讀
    行業(yè)首創(chuàng):基于<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>視覺(jué)</b>平臺(tái)的AI驅(qū)動(dòng)輪胎<b class='flag-5'>檢測(cè)</b>自動(dòng)化

    德晟達(dá)高性能服務(wù)器助力工業(yè)機(jī)器視覺(jué)落地

    當(dāng)前工業(yè)機(jī)器視覺(jué)技術(shù)正經(jīng)歷深度變革,其應(yīng)用場(chǎng)景已從傳統(tǒng)質(zhì)量檢測(cè)、自動(dòng)化生產(chǎn)逐步延伸至
    的頭像 發(fā)表于 03-11 17:22 ?967次閱讀

    AI智能質(zhì)檢系統(tǒng) 工業(yè)AI視覺(jué)檢測(cè)

    。AI質(zhì)檢系統(tǒng)通過(guò)結(jié)合機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、計(jì)算機(jī)視覺(jué)等先進(jìn)技術(shù),能夠比較準(zhǔn)確的、地完成產(chǎn)品質(zhì)量檢測(cè)
    的頭像 發(fā)表于 02-26 17:36 ?1154次閱讀
    AI智能質(zhì)檢系統(tǒng) <b class='flag-5'>工業(yè)</b>AI<b class='flag-5'>視覺(jué)</b><b class='flag-5'>檢測(cè)</b>

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開(kāi)發(fā)生物學(xué)數(shù)據(jù)的機(jī)器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個(gè)強(qiáng)大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與
    的頭像 發(fā)表于 12-30 09:16 ?1961次閱讀
    <b class='flag-5'>傳統(tǒng)</b><b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    開(kāi)源算法效果不佳,醫(yī)療行業(yè)泡罩外觀檢測(cè)怎么做?

    隨著醫(yī)療技術(shù)的不斷進(jìn)步和對(duì)醫(yī)療產(chǎn)品質(zhì)量要求的日益嚴(yán)格,工業(yè)AI視覺(jué)外觀檢測(cè)技術(shù)在醫(yī)療領(lǐng)域的應(yīng)用越來(lái)越廣泛,涉及從醫(yī)療器械的精密制造到藥品包裝的嚴(yán)格監(jiān)控等多個(gè)環(huán)節(jié)?,F(xiàn)代醫(yī)療行業(yè)的
    的頭像 發(fā)表于 12-20 14:23 ?1771次閱讀
    開(kāi)源<b class='flag-5'>算法</b>效果不佳,醫(yī)療行業(yè)泡罩<b class='flag-5'>外觀</b><b class='flag-5'>檢測(cè)</b>怎么做?