chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

模糊圖像變高清:TPU-MLIR引領(lǐng)EDSR向MDSR的智能轉(zhuǎn)換!

算能開發(fā)者社區(qū) ? 2023-12-11 17:51 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

模型介紹

EDSR模型,全稱為enhanced deep super-resolution network(增強(qiáng)的深度學(xué)習(xí)超分辨率重建網(wǎng)絡(luò))。該模型可以對指定圖片進(jìn)行超分辨率操作,提高清晰度。

而MDSR是多尺度的超分模型,可以一次輸出不同scale的圖片,相比EDSR,可以在相同的性能下,減少很多的參數(shù)。

EDSR模型結(jié)構(gòu)如下:

d04412b4-980a-11ee-9788-92fbcf53809c.png

MDSR模型結(jié)構(gòu)如下:

d062e8ec-980a-11ee-9788-92fbcf53809c.png

本期內(nèi)容將會帶領(lǐng)大家學(xué)習(xí)如何利用TPU-MLIR實(shí)現(xiàn)EDSR模型到MDSR模型的轉(zhuǎn)換。

模型導(dǎo)出與轉(zhuǎn)換

基本流程為將原項(xiàng)目與模型下載后導(dǎo)出為onnx模型。再利用TPU-MLIR工具將onnx模型轉(zhuǎn)換為bmodel模型。

目錄結(jié)構(gòu)安排如下,其中dataset文件夾中是量化所用的DIV2K數(shù)據(jù)集,image文件夾下是測試圖片,model文件夾中是待轉(zhuǎn)換的onnx模型。

.
├──dataset
│├──x2
│├──x3
│└──x4
├──image
└──model
├──EDSR_x2.onnx
├──EDSR_x3.onnx
├──EDSR_x4.onnx
├──MDSR_x2.onnx
├──MDSR_x3.onnx
└──MDSR_x4.onnx

以下命令均在TPU-MLIR的docker環(huán)境內(nèi)進(jìn)行。

進(jìn)入EDSR-transform目錄

設(shè)置參數(shù)

scale=4
size=100
echoscale=${scale}size=${size}
mkdirworkspace_x${scale}&&cdworkspace_x${scale}

  1. 模型轉(zhuǎn)換和量化

#算子轉(zhuǎn)換、圖優(yōu)化
model_transform.py\
--model_nameEDSR_x${scale}\
--model_def../model/EDSR_x${scale}.onnx\
--input_shapes[[1,3,${size},${size}]]\
--keep_aspect_ratio\
--pixel_formatrgb\
--test_input../image/0901x${scale}.png\
--test_resultEDSR_x${scale}_outputs.npz\
--mlirEDSR_x${scale}.mlir

#建立校準(zhǔn)表
run_calibration.pyEDSR_x${scale}.mlir\
--dataset../dataset/X${scale}\
--input_num50\
-oEDSR_x${scale}_cali_table

#多層優(yōu)化和轉(zhuǎn)換bmodel
##轉(zhuǎn)換INT8模型
model_deploy.py\
--mlirEDSR_x${scale}.mlir\
--quantizeINT8\
--calibration_tableEDSR_x${scale}_cali_table\
--chipbm1684x\
--test_inputEDSR_x${scale}_in_f32.npz\
--test_referenceEDSR_x${scale}_outputs.npz\
--tolerance0.85,0.45\
--modelEDSR_x${scale}_1684x_int8_sym.bmodel

##轉(zhuǎn)換FP16模型
model_deploy.py\
--mlirEDSR_x${scale}.mlir\
--quantizeF16\
--chipbm1684x\
--test_inputEDSR_x${scale}_in_f32.npz\
--test_referenceEDSR_x${scale}_top_outputs.npz\
--modelEDSR_x${scale}_1684x_f32_sym.bmodel

##轉(zhuǎn)換FP32模型
model_deploy.py\
--mlirEDSR_x${scale}.mlir\
--quantizeF32\
--chipbm1684x\
--test_inputEDSR_x${scale}_in_f32.npz\
--test_referenceEDSR_x${scale}_top_outputs.npz\
--modelEDSR_x${scale}_1684x_f32_sym.bmodel

#將以上所有EDSR改為MDSR即可轉(zhuǎn)換MDSR模型

轉(zhuǎn)換結(jié)果評估

評估過程說明

  1. 配置好BM1684X平臺,上傳并解壓本項(xiàng)目EDSR-BM1684x.zip,同時下載benchmark數(shù)據(jù)集,確保benchmark與EDSR文件夾在同一目錄內(nèi)。進(jìn)入EDSR/python目錄下,運(yùn)行以下命令:

####predictonbm1684x
formodelin{EDSR,MDSR};do
forscalein{2,3,4};do
echo-------------------------------------dataset=Set14-------------scale=${scale}-------------------------------------
cmd="pythonrun_opencv_crop.py--input../../benchmark/Set14/LR_bicubic/X${scale}\
--outputresults/${model}_Set14_x${scale}_int8\
--bmodel../models/BM1684X/${model}_x${scale}/${model}_x${scale}_1684x_int8_sym.bmodel"
echo">>>Running:${cmd}"
$cmd
done
done

  • 推理結(jié)果保存在EDSR/python/results中,更改不同bmodel參數(shù)以使用不同bmodel
  1. 評估結(jié)果方法

####安裝評估模型
pipinstalllpips

評估主要代碼(eval.py)如下

...
fori,srinenumerate(sr_list):
hr=Path(args.hr_path)/(sr.stem.split('x')[0]+sr.suffix)
ifnothr.exists():
logging.error(f'{sr}:{hr}doesnotexist')
hr_list.append(None)
continue
hr_list.append(hr)

sr_img=Image.open(sr).convert('RGB')
hr_img=Image.open(hr).convert('RGB')
ifhr_img.size!=sr_img.size:
logging.info(f'croppinghr_imgfrom{hr_img.size}to{sr_img.size}')
#hr_img=hr_img.resize(sr_img.size,resample=Image.Resampling.BICUBIC)
hr_img=hr_img.crop((0,0,sr_img.size[0],sr_img.size[1]))
sr_img=np.array(sr_img)
hr_img=np.array(hr_img)

lpi=calculate_lpips(sr_img,hr_img,border=args.scale)

sr_img_y=rgb2ycbcr(sr_img,only_y=True)
hr_img_y=rgb2ycbcr(hr_img,only_y=True)
#sr_img_y=sr_img
#hr_img_y=hr_img
psnr=calculate_psnr(sr_img_y,hr_img_y,border=args.scale)
ssim=calculate_ssim(sr_img_y,hr_img_y,border=args.scale)
...

####evaluateonbm1684x
scale=(234)
formodelin{EDSR,MDSR};do
foriin"${!scale[@]}";do
echo-------------scale=${scale[$i]}-----------------
cmd="pythoneval.py--hr_path../../benchmark/Set14/HR--sr_pathresults/${model}_Set14_x${scale[$i]}_int8--scale${scale[$i]}"
echo">>>Running:${cmd}"
$cmd
done
done

  • 評價(jià)結(jié)果保存在results/*/result.log里
  1. 若是想測試自己的圖片,請將圖片放入image目錄下然后運(yùn)行以下命令,結(jié)果保存在results/image里。更改bmodel模型來更換模型與超分倍率

pythonrun_opencv_crop.py--input../image\
--outputresults/image\
--bmodel../models/BM1684X/EDSR_x2_1684x_int8_sym.bmodel

評價(jià)代碼如下

pythoneval.py--sr_pathresults/image--hr_path../image--scale{sacle}

評估結(jié)果

精度測試方法

測試數(shù)據(jù)集采用Set14數(shù)據(jù)集,指標(biāo)采用與原論文一致的PSNR+SSIM指標(biāo)來衡量圖像質(zhì)量。因?yàn)槲覀冊谀P凸潭ㄝ斎氪笮〉那闆r下,對原圖進(jìn)行裁切,超分,拼合的形式達(dá)到動態(tài)輸入的效果,所以有的精度指標(biāo)在測試中不僅不會降低反而會升高。同時又由于不同放大倍數(shù)的模型輸入大小和模型參數(shù)不一樣,推理時間的比例也會發(fā)生變化。

fp32結(jié)果

d0695d4e-980a-11ee-9788-92fbcf53809c.png

fp32

fp16結(jié)果

d078ecaa-980a-11ee-9788-92fbcf53809c.png

fp16

int8結(jié)果

d0894df2-980a-11ee-9788-92fbcf53809c.png

int8

精度對比

d097f10e-980a-11ee-9788-92fbcf53809c.png

precise

性能對比

d0a822b8-980a-11ee-9788-92fbcf53809c.png

precise

結(jié)論

本次轉(zhuǎn)換了EDSR和MDSR超分辨率模型,分別實(shí)現(xiàn)了fp32, fp16, int8多種精度模型轉(zhuǎn)換, TPU-MLIR對這兩個模型支持較好,轉(zhuǎn)換過程中比較順利。從最終評估結(jié)果上看,這兩個超分模型對推理的數(shù)值精度不敏感,經(jīng)過量化后,相關(guān)指標(biāo)損失較少,甚至有些指標(biāo)還會提升。另外,在BM1684X的平臺上,INT8推理時間最短,故在部署時,推薦使用量化后的INT8模型部署。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3692

    瀏覽量

    51950
  • TPU
    TPU
    +關(guān)注

    關(guān)注

    0

    文章

    169

    瀏覽量

    21602
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5594

    瀏覽量

    124147
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    直擊英偉達(dá)腹地?谷歌TPU v7開放部署,催生OCS產(chǎn)業(yè)鏈紅利

    Processing Unit, TPU)構(gòu)建了一套完整的AI算力基礎(chǔ)設(shè)施體系。 ? 11月,谷歌宣布第七代 TPU v7(代號 Ironwood)將在后續(xù)幾周大規(guī)模上市。與此消息同步出來的還有:允許客戶在自有數(shù)據(jù)中心部署Ironwood。該消息一出,被認(rèn)為是谷歌
    的頭像 發(fā)表于 11-27 08:53 ?9125次閱讀
    直擊英偉達(dá)腹地?谷歌<b class='flag-5'>TPU</b> v7開放部署,催生OCS產(chǎn)業(yè)鏈紅利

    思特威全新發(fā)布智能安防應(yīng)用圖像傳感器SCC85HAI

    近日,技術(shù)先進(jìn)的CMOS圖像傳感器供應(yīng)商思特威(SmartSens,股票代碼688213),全新推出1500萬像素5K高清智能安防應(yīng)用圖像傳感器——SCC85HAI。
    的頭像 發(fā)表于 01-10 13:00 ?1177次閱讀

    智能采集終端,沃思智能

    在電力系統(tǒng)中,專用戶是指那些擁有專用變壓器、用電量較大的工商業(yè)用戶。隨著智能電網(wǎng)建設(shè)的深入推進(jìn),專采集終端作為連接電力企業(yè)與專用戶的重要紐帶,其
    的頭像 發(fā)表于 01-07 15:54 ?109次閱讀
    <b class='flag-5'>智能</b>專<b class='flag-5'>變</b>采集終端,沃思<b class='flag-5'>智能</b>

    AI芯片大單!Anthropic從博通采購100萬顆TPU v7p芯片

    電子發(fā)燒友網(wǎng)報(bào)道(文/李彎彎)近日消息,AI企業(yè)Anthropic將直接從博通采購近100萬顆TPU v7?pIronwood AI芯片,本地部署在其控制的數(shù)據(jù)中心中。也就是說,博通將直接
    的頭像 發(fā)表于 01-06 08:38 ?5932次閱讀

    相機(jī)高清卻數(shù)據(jù)傳不動?這篇圖像采集卡選型攻略,解決90%的工業(yè)視覺痛點(diǎn)

    在工業(yè)視覺領(lǐng)域,高清相機(jī)的使用已成為提升檢測精度和效率的關(guān)鍵。然而,許多企業(yè)在部署高清相機(jī)后,卻發(fā)現(xiàn)數(shù)據(jù)傳輸不暢,導(dǎo)致圖像無法正常采集、處理或傳輸,嚴(yán)重影響生產(chǎn)效率和檢測質(zhì)量。本文將圍繞高清
    的頭像 發(fā)表于 12-09 15:44 ?447次閱讀
    相機(jī)<b class='flag-5'>高清</b>卻數(shù)據(jù)傳不動?這篇<b class='flag-5'>圖像</b>采集卡選型攻略,解決90%的工業(yè)視覺痛點(diǎn)

    高清產(chǎn)業(yè),集體打響電視的翻身仗

    8K超高清視頻產(chǎn)業(yè)蓬勃,GPMI引領(lǐng)電視重回C位
    的頭像 發(fā)表于 11-28 19:06 ?5598次閱讀
    超<b class='flag-5'>高清</b>產(chǎn)業(yè),集體打響電視的翻身仗

    智能顯示模塊導(dǎo)入圖片顯示亂碼是什么原因?顯示圖片模糊是為什么?

    智能顯示模塊導(dǎo)入圖片顯示亂碼是什么原因?顯示圖片模糊是為什么?
    發(fā)表于 11-27 18:22

    華為引領(lǐng)行業(yè)智能電動化時代轉(zhuǎn)型

    副總裁、華為數(shù)字能源智能電動產(chǎn)品線總裁王超發(fā)表主題演講,表示華為智能電動DriveONE將以“度電續(xù)航”和“運(yùn)動域”為兩大核心突破口,引領(lǐng)行業(yè)智能
    的頭像 發(fā)表于 04-25 16:50 ?826次閱讀

    TPU處理器的特性和工作原理

    張量處理單元(TPU,Tensor Processing Unit)是一種專門為深度學(xué)習(xí)應(yīng)用設(shè)計(jì)的硬件加速器。它的開發(fā)源于對人工智能(AI)和機(jī)器學(xué)習(xí)應(yīng)用的需求,尤其是深度學(xué)習(xí)中的神經(jīng)網(wǎng)絡(luò)計(jì)算。
    的頭像 發(fā)表于 04-22 09:41 ?4044次閱讀
    <b class='flag-5'>TPU</b>處理器的特性和工作原理

    Google推出第七代TPU芯片Ironwood

    在 Google Cloud Next 25 大會上,我們隆重推出第 7 代 Tensor Processing Unit (TPU) — Ironwood。這不僅是我們迄今為止性能最高、擴(kuò)展性最佳的定制 AI 加速器,更是第一款專為推理而設(shè)計(jì)的 TPU。
    的頭像 發(fā)表于 04-16 11:20 ?1635次閱讀
    Google推出第七代<b class='flag-5'>TPU</b>芯片Ironwood

    明遠(yuǎn)智睿SSD2351核心板助力智能監(jiān)控系統(tǒng)升級

    ,在同時接入8路1080P高清攝像頭時,視頻數(shù)據(jù)傳輸流暢,無丟幀現(xiàn)象,保證了監(jiān)控畫面的完整性和連續(xù)性。 IPU(圖像信號處理器)是SSD2351核心板提升圖像質(zhì)量的關(guān)鍵組件。在智能監(jiān)控
    發(fā)表于 04-14 18:28

    為什么無法使用OpenVINO?模型優(yōu)化器轉(zhuǎn)換TensorFlow 2.4模型?

    已下載 ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8 型號。 使用將模型轉(zhuǎn)換為中間表示 (IR) ssd_support_api_v.2.4.json
    發(fā)表于 03-05 09:07

    DLPDLCR2000EVM輸入對焦電機(jī)控制指令時,觀察輸出的投影儀圖像,沒有明顯變化是怎么回事?

    1、把0x00000032寫入到0x39寄存器,在將0x00000001寫入到0x3a,最后將0x000000ca寫入0x38寄存器中。 2、觀看投影儀輸出的圖像,圖片沒有模糊也沒有變清晰。
    發(fā)表于 02-21 07:10

    THS8200輸出模糊不清怎么解決?

    bit 4:2:2, embedded)HS/VSout +/+, RGB>YCbCr>RGB 的工作模式,依據(jù)附件中設(shè)置THS8200寄存器后,輸出的圖像模糊不清,請你們給出好的建議,謝謝!
    發(fā)表于 02-12 06:45

    TPU編程競賽系列|第九屆集創(chuàng)賽“算能杯”火熱報(bào)名中!

    ,探索將語言模型、邊緣計(jì)算等技術(shù)移植并部署于TPU硬件設(shè)備上的創(chuàng)新方案。在這個充滿希望的蛇年新春,讓我們共同開啟智能時代的新篇章!一、賽題任務(wù)基于算能TPU硬件,實(shí)現(xiàn)
    的頭像 發(fā)表于 02-06 13:41 ?1790次閱讀
    <b class='flag-5'>TPU</b>編程競賽系列|第九屆集創(chuàng)賽“算能杯”火熱報(bào)名中!