chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

摩爾定律的未來:CMOS技術(shù)的挑戰(zhàn)與機(jī)遇

半導(dǎo)體產(chǎn)業(yè)縱橫 ? 來源:半導(dǎo)體產(chǎn)業(yè)縱橫 ? 2024-01-24 11:26 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

受到威脅的不是摩爾定律本身,而是它所代表的促進(jìn)經(jīng)濟(jì)增長、科學(xué)進(jìn)步和可持續(xù)創(chuàng)新的能力。

CMOS 技術(shù)通過平衡性能、能源效率和經(jīng)濟(jì)性,徹底改變了電子行業(yè)。片上系統(tǒng) (SoC) 范例允許采用通用方法來驅(qū)動(dòng)日益復(fù)雜的系統(tǒng),在單個(gè)芯片上集成越來越多的晶體管。正如已故的戈登摩爾在半個(gè)多世紀(jì)前所預(yù)測的那樣,這也實(shí)現(xiàn)了大批量和低成本的生產(chǎn),提高了電子產(chǎn)品的可承受性。 摩爾表示,半導(dǎo)體芯片上的晶體管數(shù)量每兩年就會(huì)增加一倍,這一趨勢將推動(dòng)日益強(qiáng)大和高效的電子設(shè)備的發(fā)展。簡而言之,你可以通過把事情變得更小來讓事情變得更好。 對(duì)小型化和通用設(shè)計(jì)的極大關(guān)注是 CMOS 在過去幾十年中取得巨大成功的核心,但如今已接近其物理極限。

CMOS 縮放遇到多個(gè)障礙

雖然 SoC 方法提供了最大的能源效率,但它促使系統(tǒng)架構(gòu)師在 CMOS 平臺(tái)內(nèi)積累大量復(fù)雜的功能。2000年代誕生的多核架構(gòu)的優(yōu)化導(dǎo)致了多種計(jì)算引擎的興起,從最初的CPUGPU的分割,到不同功率優(yōu)化的處理器,再到不同類型的加速器。多年來,SoC 內(nèi)的內(nèi)存子系統(tǒng)也發(fā)生了廣泛的多樣化,導(dǎo)致了復(fù)雜的層次結(jié)構(gòu)和各種訪問機(jī)制。 這種持續(xù)優(yōu)化背后的驅(qū)動(dòng)力是需要根據(jù)其必須執(zhí)行的任務(wù)類型或工作負(fù)載來優(yōu)化計(jì)算系統(tǒng),每個(gè)任務(wù)或工作負(fù)載都高度特定于目標(biāo)應(yīng)用程序。值得注意的是,這種演變甚至可以在單一技術(shù)平臺(tái)內(nèi)實(shí)現(xiàn),而且就目前情況而言,有幾個(gè)重要的障礙阻礙了其進(jìn)一步發(fā)展:

我們正在見證由微凸塊節(jié)距縮放和混合鍵合驅(qū)動(dòng)的芯片間電氣互連的巨大進(jìn)步,這允許對(duì) SoC 功能進(jìn)行細(xì)粒度劃分?;诠韫庾訉W(xué)的光學(xué)互連和 3D 互連的進(jìn)步實(shí)現(xiàn)了聯(lián)合封裝,以更短的長度提供高帶寬、低功耗的光學(xué)連接。這就引出了一個(gè)問題:SoC 方法是否仍然保持其原有的能效優(yōu)勢。分成多個(gè)芯片可以在成本和性能優(yōu)化方面帶來巨大的好處。

應(yīng)用的多樣性需要先進(jìn)的技術(shù)來突破計(jì)算性能的界限,這使得 CMOS 達(dá)到了其作為通用平臺(tái)所能提供的極限。設(shè)計(jì)人員現(xiàn)在需要解決單一平臺(tái)的限制,這有時(shí)會(huì)導(dǎo)致效率大幅降低。

整個(gè) CMOS 平臺(tái)的整體縮放解決方案變得越來越難以實(shí)現(xiàn)。例如,2 納米納米片技術(shù)將使傳統(tǒng)的厚氧化物 IO 電路從 SoC 中移出。SRAM 的擴(kuò)展程度不如邏輯,并且 SoC 中的功率需要通過背面互連網(wǎng)絡(luò)進(jìn)行分配,因?yàn)檎婊ミB電阻會(huì)變得令人望而卻步。

由于晶體管 RC 寄生效應(yīng)的增長快于驅(qū)動(dòng)強(qiáng)度的增長,CMOS 的節(jié)點(diǎn)到節(jié)點(diǎn)性能改進(jìn)也顯著降低。由于設(shè)計(jì)規(guī)則和工藝集成的復(fù)雜性,先進(jìn) CMOS 的設(shè)計(jì)和晶圓成本顯著增加,因此出現(xiàn)了這種情況。

從通用到“驚喜彩票”

在技術(shù)和產(chǎn)品需求不斷變化的有趣背景下,創(chuàng)造性的組合催生了創(chuàng)新的解決方案。例如,Apple M1 Ultra 本質(zhì)上是通過硅橋?qū)蓚€(gè)芯片縫合在一起,從而創(chuàng)建具有前所未有的性能和功能的混合 SoC。AMD 通過在原始處理器 SoC 頂部 3D 堆疊 SRAM 芯片來增加內(nèi)存容量。在人工智能領(lǐng)域,超級(jí)橫向擴(kuò)展處理系統(tǒng)(例如全晶圓 Cerebras 的 WSE-2 和 Nvidia 的大型 GPU 芯片 H100 組合 HBM DRAM)正在突破深度學(xué)習(xí)計(jì)算的界限。

上面的例子說明了技術(shù)開發(fā)是如何根據(jù)給定應(yīng)用程序空間的具體需求而被推向極端的。與此同時(shí),增強(qiáng)現(xiàn)實(shí)和虛擬現(xiàn)實(shí)、6G 無線和自動(dòng)駕駛汽車等新興應(yīng)用將需要極大的性能改進(jìn)和功耗降低。工作負(fù)載和操作條件將進(jìn)一步增加 CMOS 所支持的實(shí)現(xiàn)的多樣性,從而迫使人們做出更多次妥協(xié)。 換句話說,我們正在目睹 CMOS 未能發(fā)揮其作為通用技術(shù)的強(qiáng)大作用。相反,我們最終會(huì)遇到這樣的情況:應(yīng)用程序的成功將取決于可用的 CMOS 滿足其特定邊界條件的程度。Sara Hooker 創(chuàng)造了“硬件彩票”,表明硬件決定了哪些研究想法會(huì)成功或失敗。

協(xié)同優(yōu)化系統(tǒng)和技術(shù)

當(dāng)你唯一的工具是錘子時(shí),你很容易把所有問題都當(dāng)作釘子來對(duì)待。解決這個(gè)難題的唯一方法是擴(kuò)展工具箱。換句話說,我們需要更加通用的技術(shù)平臺(tái),因?yàn)橐苿?dòng)芯片組的能源、成本、溫度、功率密度、內(nèi)存容量、速度等限制與 HPC 或 VR 系統(tǒng)的限制非常不同。 這就是為什么我們設(shè)想一種由系統(tǒng)技術(shù)協(xié)同優(yōu)化 (STCO) 驅(qū)動(dòng)的全新范例:CMOS 2.0。STCO 涉及系統(tǒng)設(shè)計(jì)人員與技術(shù)團(tuán)隊(duì)密切合作,以確定最合適的選項(xiàng),而不是依賴現(xiàn)成的擴(kuò)展選項(xiàng)。技術(shù)團(tuán)隊(duì)在開發(fā)下一代產(chǎn)品時(shí)還需要了解特定的系統(tǒng)規(guī)范。應(yīng)用程序、工作負(fù)載和系統(tǒng)限制的多樣性將需要更廣泛的技術(shù)選擇。 它需要重新思考技術(shù)平臺(tái),以便滿足各種系統(tǒng)和應(yīng)用程序的需求。CMOS 2.0 通過啟用定制芯片來實(shí)現(xiàn)這一目標(biāo),這些芯片是根據(jù)多個(gè) 3D 堆疊層中的各種功能的智能分區(qū)而構(gòu)建的。

CMOS2.0 具有與經(jīng)典 CMOS 平臺(tái)相同的“外觀和感覺” 與我們今天看到的異構(gòu)系統(tǒng)不同,在異構(gòu)系統(tǒng)中,混合鍵合解決了內(nèi)存限制,有源中介層解決了帶寬限制,背面配電網(wǎng)絡(luò)解決了功耗問題,而 CMOS 2.0 通過在 SoC 內(nèi)部引入異構(gòu)性,采取了更具革命性的方法。它將具有與經(jīng)典 CMOS 平臺(tái)相同的“外觀和感覺”,同時(shí)為系統(tǒng)優(yōu)化提供更多功能。密集邏輯層將代表大部分成本,并且仍然需要擴(kuò)展。然而,其他縮放限制現(xiàn)在已被物理刪除到其他層。

兩全其美

CMOS 2.0 將利用現(xiàn)有的和新的先進(jìn) 2.5D 和 3D 互連技術(shù),例如密集間距銅混合鍵合、電介質(zhì)鍵合、小芯片集成、晶圓背面處理以及涉及異質(zhì)層轉(zhuǎn)移的順序 3D 集成。它將允許 SoC 的高互連粒度以及封裝內(nèi)系統(tǒng)提供的高科技異構(gòu)性,從根本上解除傳統(tǒng) CMOS 的限制。 CMOS 2.0 將允許使用低電容、低驅(qū)動(dòng)晶體管來驅(qū)動(dòng)短程互連,同時(shí)利用單獨(dú)層中的高驅(qū)動(dòng)晶體管來驅(qū)動(dòng)長程互連。新的嵌入式存儲(chǔ)器可以作為高速緩存層次結(jié)構(gòu)中的單獨(dú)層引入。它還可以實(shí)現(xiàn)極端的 BEOL 節(jié)距圖案以進(jìn)行縮放,而不受電源壓降的限制。

引入非硅器件(如 2D 材料)、新型嵌入式存儲(chǔ)器(如 MRAM 或沉積氧化物半導(dǎo)體)將變得更加容易,因?yàn)樗鼈儫o需滿足通用 CMOS 規(guī)范。對(duì)于設(shè)計(jì)人員來說,CMOS 2.0 平臺(tái)感覺就像傳統(tǒng)的 CMOS,但具有顯著擴(kuò)展且更通用的工具箱。 雖然尺寸縮放不再是推動(dòng)計(jì)算縮放的唯一答案,但 CMOS 2.0 不會(huì)消除增加密度的需要。然而,擴(kuò)展問題必須以更全面的方式解決,因?yàn)榇鸢笗?huì)根據(jù)應(yīng)用程序的不同而不同。高密度邏輯將優(yōu)化每瓦性能,而高驅(qū)動(dòng)邏輯則保持關(guān)鍵路徑中的帶寬和性能。擴(kuò)展性較差的設(shè)備,例如密集邏輯厚氧化物 IO、電源開關(guān)、模擬或 MIMCAP,現(xiàn)在可以使用更具成本效益的技術(shù)節(jié)點(diǎn)集成在單獨(dú)的層中。移除所有必要但不可擴(kuò)展的 SoC 部件也為一系列新型設(shè)備打開了大門。

革命已經(jīng)開始

背面配電網(wǎng)絡(luò)是我們進(jìn)入新 CMOS 2.0 時(shí)代的第一個(gè)跡象。所有主要代工廠都宣布他們將轉(zhuǎn)向在晶圓背面配備配電系統(tǒng)的集成芯片,這對(duì)于實(shí)現(xiàn)高性能和節(jié)能電子設(shè)備變得越來越重要。晶圓背面處理的使用為集成電源開關(guān)等設(shè)備、從正面遷移全局時(shí)鐘路由或添加新的系統(tǒng)功能提供了機(jī)會(huì)。 可以說,這種范式轉(zhuǎn)變提供了更復(fù)雜的技術(shù)現(xiàn)實(shí)。

EDA 工具的發(fā)展速度有多快?分區(qū)的成本和復(fù)雜性是否會(huì)變得令人望而卻步?CMOS 2.0 平臺(tái)的熱性能是否可控?只有時(shí)間會(huì)給出答案。引用德國哲學(xué)家和革命家弗里德里希·恩格斯的話:“沒有人確切知道他正在創(chuàng)造的革命?!?與此同時(shí),這也正是這些時(shí)代如此迷人的原因。探索這些未知領(lǐng)域需要整個(gè)半導(dǎo)體生態(tài)系統(tǒng)的密切合作和共同創(chuàng)新。受到威脅的不是摩爾定律本身,而是它所代表的促進(jìn)經(jīng)濟(jì)增長、科學(xué)進(jìn)步和可持續(xù)創(chuàng)新的能力。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • CMOS
    +關(guān)注

    關(guān)注

    58

    文章

    6191

    瀏覽量

    241605
  • 摩爾定律
    +關(guān)注

    關(guān)注

    4

    文章

    640

    瀏覽量

    80626
  • soc
    soc
    +關(guān)注

    關(guān)注

    38

    文章

    4517

    瀏覽量

    227675
  • 晶體管
    +關(guān)注

    關(guān)注

    78

    文章

    10277

    瀏覽量

    146360
  • 半導(dǎo)體芯片
    +關(guān)注

    關(guān)注

    61

    文章

    941

    瀏覽量

    72326

原文標(biāo)題:CMOS 2.0 革命

文章出處:【微信號(hào):ICViews,微信公眾號(hào):半導(dǎo)體產(chǎn)業(yè)縱橫】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    CMOS 2.0與Chiplet兩種創(chuàng)新技術(shù)的區(qū)別

    摩爾定律正在減速。過去我們靠不斷縮小晶體管尺寸提升芯片性能,但如今物理極限越來越近。在這樣的背景下,兩種創(chuàng)新技術(shù)站上舞臺(tái):CMOS 2.0 和 Chiplet(芯粒)。它們都在解決 “如何讓芯片更強(qiáng)” 的問題,但思路卻大相徑庭。
    的頭像 發(fā)表于 09-09 15:42 ?729次閱讀

    借助AMD無頂蓋封裝技術(shù)應(yīng)對(duì)散熱挑戰(zhàn)

    隨著電子行業(yè)向更小節(jié)點(diǎn)邁進(jìn),現(xiàn)代應(yīng)用要求更高的時(shí)鐘速率和性能。2014 年,斯坦福大學(xué)教授 Mark Horowitz 發(fā)表了一篇開創(chuàng)性的論文,描述半導(dǎo)體行業(yè)面臨相關(guān)登納德縮放及摩爾定律失效的挑戰(zhàn)
    的頭像 發(fā)表于 08-21 09:07 ?700次閱讀

    當(dāng)摩爾定律 “踩剎車” ,三星 、AP、普迪飛共話半導(dǎo)體制造新變革新機(jī)遇

    ,揭示行業(yè)正處于從“晶體管密度驅(qū)動(dòng)”向“系統(tǒng)級(jí)創(chuàng)新”轉(zhuǎn)型的關(guān)鍵節(jié)點(diǎn)。隨著摩爾定律放緩、供應(yīng)鏈分散化政策推進(jìn),一場融合制造技術(shù)革新與供應(yīng)鏈數(shù)字化的產(chǎn)業(yè)變革正在上演。
    的頭像 發(fā)表于 08-19 13:48 ?1079次閱讀
    當(dāng)<b class='flag-5'>摩爾定律</b> “踩剎車” ,三星 、AP、普迪飛共話半導(dǎo)體制造新變革新<b class='flag-5'>機(jī)遇</b>

    Chiplet與3D封裝技術(shù):后摩爾時(shí)代的芯片革命與屹立芯創(chuàng)的良率保障

    摩爾定律逐漸放緩的背景下,Chiplet(小芯片)技術(shù)和3D封裝成為半導(dǎo)體行業(yè)突破性能與集成度瓶頸的關(guān)鍵路徑。然而,隨著芯片集成度的提高,氣泡缺陷成為影響封裝良率的核心挑戰(zhàn)之一。
    的頭像 發(fā)表于 07-29 14:49 ?760次閱讀
    Chiplet與3D封裝<b class='flag-5'>技術(shù)</b>:后<b class='flag-5'>摩爾</b>時(shí)代的芯片革命與屹立芯創(chuàng)的良率保障

    晶心科技:摩爾定律放緩,RISC-V在高性能計(jì)算的重要性突顯

    運(yùn)算還是快速高頻處理計(jì)算數(shù)據(jù),或是超級(jí)電腦,只要設(shè)計(jì)或計(jì)算系統(tǒng)符合三項(xiàng)之一即可稱之為HPC。 摩爾定律走過數(shù)十年,從1970年代開始,世界領(lǐng)導(dǎo)廠商建立晶圓廠、提供制程工藝,在28nm之前取得非常大的成功。然而28nm之后摩爾定律在接近物理極限之前遇到大量的困
    的頭像 發(fā)表于 07-18 11:13 ?4033次閱讀
    晶心科技:<b class='flag-5'>摩爾定律</b>放緩,RISC-V在高性能計(jì)算的重要性突顯

    跨越摩爾定律,新思科技掩膜方案憑何改寫3nm以下芯片游戲規(guī)則

    。 然而,隨著摩爾定律逼近物理極限,傳統(tǒng)掩模設(shè)計(jì)方法面臨巨大挑戰(zhàn),以2nm制程為例,掩膜版上的每個(gè)圖形特征尺寸僅為頭發(fā)絲直徑的五萬分之一,任何微小誤差都可能導(dǎo)致芯片失效。對(duì)此,新思科技(Synopsys)推出制造解決方案,尤其是
    的頭像 發(fā)表于 05-16 09:36 ?5464次閱讀
    跨越<b class='flag-5'>摩爾定律</b>,新思科技掩膜方案憑何改寫3nm以下芯片游戲規(guī)則

    電力電子中的“摩爾定律”(1)

    本文是第二屆電力電子科普征文大賽的獲獎(jiǎng)作品,來自上??萍即髮W(xué)劉賾源的投稿。著名的摩爾定律中指出,集成電路每過一定時(shí)間就會(huì)性能翻倍,成本減半。那么電力電子當(dāng)中是否也存在著摩爾定律呢?1965年,英特爾
    的頭像 發(fā)表于 05-10 08:32 ?691次閱讀
    電力電子中的“<b class='flag-5'>摩爾定律</b>”(1)

    玻璃基板在芯片封裝中的應(yīng)用

    上升,摩爾定律的延續(xù)面臨巨大挑戰(zhàn)。例如,從22納米工藝制程開始,每一代技術(shù)的設(shè)計(jì)成本增加均超過50%,3納米工藝的總設(shè)計(jì)成本更是高達(dá)15億美元。此外,晶體管成本縮放規(guī)律在28納米制程后已經(jīng)停滯。
    的頭像 發(fā)表于 04-23 11:53 ?2464次閱讀
    玻璃基板在芯片封裝中的應(yīng)用

    先進(jìn)封裝工藝面臨的挑戰(zhàn)

    在先進(jìn)制程遭遇微縮瓶頸的背景下,先進(jìn)封裝朝著 3D 異質(zhì)整合方向發(fā)展,成為延續(xù)摩爾定律的關(guān)鍵路徑。3D 先進(jìn)封裝技術(shù)作為未來的發(fā)展趨勢,使芯片串聯(lián)數(shù)量大幅增加。
    的頭像 發(fā)表于 04-09 15:29 ?912次閱讀

    瑞沃微先進(jìn)封裝:突破摩爾定律枷鎖,助力半導(dǎo)體新飛躍

    在半導(dǎo)體行業(yè)的發(fā)展歷程中,技術(shù)創(chuàng)新始終是推動(dòng)行業(yè)前進(jìn)的核心動(dòng)力。深圳瑞沃微半導(dǎo)體憑借其先進(jìn)封裝技術(shù),用強(qiáng)大的實(shí)力和創(chuàng)新理念,立志將半導(dǎo)體行業(yè)邁向新的高度。 回溯半導(dǎo)體行業(yè)的發(fā)展軌跡,摩爾定律無疑是一個(gè)重要的里程碑
    的頭像 發(fā)表于 03-17 11:33 ?718次閱讀
    瑞沃微先進(jìn)封裝:突破<b class='flag-5'>摩爾定律</b>枷鎖,助力半導(dǎo)體新飛躍

    AI正在對(duì)硬件互連提出“過分”要求 | Samtec于Keysight開放日深度分享

    摘要/前言 硬件加速,可能總會(huì)是新的難點(diǎn)和挑戰(zhàn)。面對(duì)信息速率和密度不斷提升的AI,技術(shù)進(jìn)步也會(huì)遵循摩爾定律,那硬件互連準(zhǔn)備好了嗎? Samtec China Sr. FAE Manager 胡亞捷
    發(fā)表于 02-26 11:09 ?935次閱讀
    AI正在對(duì)硬件互連提出“過分”要求 | Samtec于Keysight開放日深度分享

    納米壓印技術(shù):開創(chuàng)下一代光刻的新篇章

    光刻技術(shù)對(duì)芯片制造至關(guān)重要,但傳統(tǒng)紫外光刻受衍射限制,摩爾定律面臨挑戰(zhàn)。為突破瓶頸,下一代光刻(NGL)技術(shù)應(yīng)運(yùn)而生。本文將介紹納米壓印技術(shù)
    的頭像 發(fā)表于 02-13 10:03 ?3378次閱讀
    納米壓印<b class='flag-5'>技術(shù)</b>:開創(chuàng)下一代光刻的新篇章

    混合鍵合中的銅連接:或成摩爾定律救星

    混合鍵合3D芯片技術(shù)將拯救摩爾定律。 為了繼續(xù)縮小電路尺寸,芯片制造商正在爭奪每一納米的空間。但在未來5年里,一項(xiàng)涉及幾百乃至幾千納米的更大尺度的技術(shù)可能同樣重要。 這項(xiàng)
    的頭像 發(fā)表于 02-09 09:21 ?1136次閱讀
    混合鍵合中的銅連接:或成<b class='flag-5'>摩爾定律</b>救星

    石墨烯互連技術(shù):延續(xù)摩爾定律的新希望

    半導(dǎo)體行業(yè)長期秉持的摩爾定律(該定律規(guī)定芯片上的晶體管密度大約每兩年應(yīng)翻一番)越來越難以維持。縮小晶體管及其間互連的能力正遭遇一些基本的物理限制。特別是,當(dāng)銅互連按比例縮小時(shí),其電阻率急劇上升,這會(huì)
    的頭像 發(fā)表于 01-09 11:34 ?881次閱讀

    摩爾定律是什么 影響了我們哪些方面

    摩爾定律是由英特爾公司創(chuàng)始人戈登·摩爾提出的,它揭示了集成電路上可容納的晶體管數(shù)量大約每18-24個(gè)月增加一倍的趨勢。該定律不僅推動(dòng)了計(jì)算機(jī)硬件的快速發(fā)展,也對(duì)多個(gè)領(lǐng)域產(chǎn)生了深遠(yuǎn)影響。
    的頭像 發(fā)表于 01-07 18:31 ?2950次閱讀