chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

PMMA微流控芯片的鍵合介紹

蘇州汶顥 ? 來源:汶顥 ? 作者:汶顥 ? 2024-08-13 15:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

微流控芯片鍵合前PMMA的表面處理
在粘合之前對被粘接物表面進行處理是粘合工藝中最重要的環(huán)節(jié)之一。初始的粘接強度和耐久性完全取決于膠粘劑接觸的表面類型。被粘接物處理的程度和使用環(huán)境與極限粘接強度有關(guān)。在許多低強度到中等強度應(yīng)用中,大范圍的表面處理或許沒有必要。但是,要求最大粘接強度、永久性和可靠性的地方,必須仔細地控制表面處理工藝。
影響PMMA板材粘合性能的因素很多,包括材料本身的潤濕性和粘合表面的清潔度等。材料的潤濕性極為復(fù)雜,因而,為了提高材料粘合面的質(zhì)量,可采用以下一項或多項措施:清除材料表面污物;控制吸附水;抑制促使聚合物分解的表面粒子;被粘接物內(nèi)部結(jié)構(gòu)應(yīng)與膠粘劑分子結(jié)構(gòu)相容合;控制表面粗糙度。實驗證明進行過處理的表面粘接效果比未處理前有明顯的提過。除此以外,為避免粘接過程在兩塊板之間產(chǎn)生氣泡,須保證粘接表面的平整性,為此,基片上打出儲液孔后,孔的周圍需圓滑處理,去除高于粘接表面的粗糙部分,維持原有平面的平整。

PMMA 板材表面處理的有效性可用多種方法加以評價。在粘接之前,可以使用“水膜殘跡”試驗和接觸角試驗。在粘合后,采取對芯片拉應(yīng)力破壞試驗測定粘合強度來評價處理的效果。在實際應(yīng)用中,“水膜殘跡”試驗是一種比較經(jīng)濟實用的方法,通過觀察清潔表面(用化學方法激活或極化的表面)能否保持連續(xù)水膜來判定。又稱作無水膜殘跡條件。水膜斷開表示有油跡或污染的區(qū)域。由于殘留的清洗液遺留在表面上,形成連續(xù)水膜的可能性亦存在,所以在試驗前務(wù)必保證表面用水徹底沖洗。如果在表面上不能觀察到無水膜殘跡條件,就不能用于粘合或粘接。
芯片的熱粘合
熱粘合的溫度、加熱時間和壓力是關(guān)系成敗的重要參數(shù)。由于基片和蓋片采用了同種材料,相應(yīng)的熱粘合條件與微通道熱壓成形相當,只是根據(jù)鍵合質(zhì)量的需要對參數(shù)進行適當?shù)卣{(diào)整。通常粘合溫度要低于玻璃化溫度,但要高于熱壓成形溫度。如果溫度不夠高、壓力過小或加熱時間太短,容易在兩塊板的接觸面間產(chǎn)生氣泡(如圖1a),使芯片通道不能完全密封,導致樣品泄漏;反之,則通道變淺甚至消失。
玻璃化溫度是關(guān)系到高聚物芯片熱粘合的重要參數(shù),同一單體不同的幾何立構(gòu)可能對應(yīng)截然不同的玻璃化溫度。如間規(guī)力構(gòu)的PMMA的玻璃化溫度是115℃,而全同力構(gòu)的 PMMA的玻璃化溫度是43℃。因而,兩種材料粘合條件的懸殊可以推測為是由兩種PMMA微觀結(jié)構(gòu)的差異決定的,而這種差異是由不同生產(chǎn)條件導致。
芯片的溶劑粘合
本文除了嘗試利用物理的熱粘合之外,還成功地使用化學溶劑將蓋片和基片有效地粘合。該方法適于無定形熱塑性自身的粘合,同時也可用于性能相近的不同塑料的粘合。這種方法對溶劑要求較高,首先要求溶劑必須具有足夠的活性,可使整個粘合面均勻地溶解或溶脹到可粘程度,略施加壓力即可粘合;其次要求溶劑具有適當?shù)膿]發(fā)速度,在未使塑料發(fā)生龜裂或產(chǎn)生白色霧狀膜的情況下,盡量揮發(fā)得快一些,這樣可使粘接強度在較短時間內(nèi)達到最高值。由此可見,在溶劑粘合中,對溶劑的選擇,特別是按照塑料和溶劑的溶解參數(shù)(SP)以及溶劑的沸點選擇適當溶劑尤為重要。
一般來說,溶劑與塑料之間的溶解度參數(shù)越接近,溶劑對塑料的溶解性就越好,表2列出了一些塑料和溶劑的溶解度參數(shù)。從表中可以看到,丙酮(SP=10)可溶解PMMA(SP=9.3),可作為芯片粘合用的溶劑。然而試驗發(fā)現(xiàn),丙酮很容易在PMMA表面產(chǎn)生“混濁膜”,而且還容易使表面發(fā)生龜裂,產(chǎn)生無數(shù)細小的裂紋痕。導致最終的粘接質(zhì)量下降,芯片透光率降低,既影響了芯片的美觀,也給接下來的藥物檢測增加了困難。
被粘接聚合物一般與其單體具有很好的相容性。在進行PMMA溶劑粘合試驗中,采用PMMA的粉末溶于其單體MMA,制成粘合芯片用的溶膠。因為MMA在空氣中具有揮發(fā)性,旋涂在PMMA表面上在數(shù)十秒內(nèi)就能揮發(fā)殆盡。因此很難對芯片表面達到有效地溶解,未溶解的部位無法粘合,未粘合部分將出現(xiàn)氣泡。為改善粘合效果,在MMA溶劑中加入少許膠粘劑PMMA微粉,配制成溶劑膠粘劑。如果此類單體在室溫下聚合或在塑料軟化點以下加熱促進聚合,把少量的同質(zhì)聚合物粉末加入單體中,不但可促進聚合還可避免龜裂現(xiàn)象。
免責聲明:文章來源汶顥www.whchip.com以傳播知識、有益學習和研究為宗旨。轉(zhuǎn)載僅供參考學習及傳遞有用信息,版權(quán)歸原作者所有,如侵犯權(quán)益,請聯(lián)系刪除。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 微流控芯片
    +關(guān)注

    關(guān)注

    13

    文章

    310

    瀏覽量

    19948
  • 鍵合
    +關(guān)注

    關(guān)注

    0

    文章

    87

    瀏覽量

    8241
  • 微流控
    +關(guān)注

    關(guān)注

    16

    文章

    588

    瀏覽量

    20545
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    芯片工藝技術(shù)介紹

    在半導體封裝工藝中,芯片(Die Bonding)是指將晶圓芯片固定到封裝基板上的關(guān)鍵步驟。
    的頭像 發(fā)表于 10-21 17:36 ?1809次閱讀
    <b class='flag-5'>芯片</b><b class='flag-5'>鍵</b><b class='flag-5'>合</b>工藝技術(shù)<b class='flag-5'>介紹</b>

    IGBT 芯片平整度差,引發(fā)線與芯片連接部位應(yīng)力集中,失效

    一、引言 在 IGBT 模塊的可靠性研究中,線失效是導致器件性能退化的重要因素。研究發(fā)現(xiàn),芯片表面平整度與線連接可靠性存在緊密關(guān)聯(lián)。
    的頭像 發(fā)表于 09-02 10:37 ?1706次閱讀
    IGBT <b class='flag-5'>芯片</b>平整度差,引發(fā)<b class='flag-5'>鍵</b><b class='flag-5'>合</b>線與<b class='flag-5'>芯片</b>連接部位應(yīng)力集中,<b class='flag-5'>鍵</b><b class='flag-5'>合</b>失效

    芯片制造中的技術(shù)詳解

    ?融合)與中間層(如高分子、金屬)兩類,其溫度控制、對準精度等參數(shù)直接影響芯片堆疊、光電集成等應(yīng)用的性能與可靠性,本質(zhì)是通過突破納米級原子間距實現(xiàn)微觀到宏觀的穩(wěn)固連接。
    的頭像 發(fā)表于 08-01 09:25 ?1535次閱讀
    <b class='flag-5'>芯片</b>制造中的<b class='flag-5'>鍵</b><b class='flag-5'>合</b>技術(shù)詳解

    混合(Hybrid Bonding)工藝介紹

    所謂混合(hybrid bonding),指的是將兩片以上不相同的Wafer或Die通過金屬互連的混合工藝,來實現(xiàn)三維集成,在Hybrid Bonding前,2D,2.5D及3
    的頭像 發(fā)表于 07-10 11:12 ?2281次閱讀
    混合<b class='flag-5'>鍵</b><b class='flag-5'>合</b>(Hybrid Bonding)工藝<b class='flag-5'>介紹</b>

    芯片的封工藝有哪些

    芯片工藝旨在將芯片的不同部分牢固結(jié)合,確保芯片內(nèi)部流體通道的密封性和穩(wěn)定性,以實現(xiàn)
    的頭像 發(fā)表于 06-13 16:42 ?601次閱讀

    什么是引線鍵合?芯片引線鍵合保護膠用什么比較好?

    引線鍵合的定義--什么是引線鍵合?引線鍵合(WireBonding)是微電子封裝中的關(guān)鍵工藝,通過金屬細絲(如金線、鋁線或銅線)將芯片焊盤與外部基板、引線框架或其他
    的頭像 發(fā)表于 06-06 10:11 ?906次閱讀
    什么是引線<b class='flag-5'>鍵合</b>?<b class='flag-5'>芯片</b>引線<b class='flag-5'>鍵合</b>保護膠用什么比較好?

    芯片封裝中的打線介紹

    打線就是將芯片上的電信號從芯片內(nèi)部“引出來”的關(guān)鍵步驟。我們要用極細的金屬線(多為金線、鋁線或銅線)將芯片的焊盤(bond pad)和支
    的頭像 發(fā)表于 06-03 18:25 ?1599次閱讀

    混合工藝介紹

    所謂混合(hybrid bonding),指的是將兩片以上不相同的Wafer或Die通過金屬互連的混合工藝,來實現(xiàn)三維集成,在Hybrid Bonding前,2D,2.5D及3
    的頭像 發(fā)表于 06-03 11:35 ?1827次閱讀
    混合<b class='flag-5'>鍵</b><b class='flag-5'>合</b>工藝<b class='flag-5'>介紹</b>

    倒裝芯片技術(shù)的特點和實現(xiàn)過程

    本文介紹了倒裝芯片技術(shù)的特點和實現(xiàn)過程以及詳細工藝等。
    的頭像 發(fā)表于 04-22 09:38 ?2231次閱讀
    倒裝<b class='flag-5'>芯片</b><b class='flag-5'>鍵</b><b class='flag-5'>合</b>技術(shù)的特點和實現(xiàn)過程

    芯片封裝技術(shù)工藝流程以及優(yōu)缺點介紹

    為邦定。 目前主要有四種技術(shù):傳統(tǒng)而可靠的引線鍵合(Wire Bonding)、性能優(yōu)異的倒裝芯片(Flip Chip)、自動化程度高的載帶自動
    的頭像 發(fā)表于 03-22 09:45 ?5065次閱讀
    <b class='flag-5'>芯片</b>封裝<b class='flag-5'>鍵</b><b class='flag-5'>合</b>技術(shù)工藝流程以及優(yōu)缺點<b class='flag-5'>介紹</b>

    金絲的主要過程和關(guān)鍵參數(shù)

    ,金絲工藝便能與其他耐受溫度在300℃以下的組裝工藝相互適配,在高可靠集成電路封裝領(lǐng)域得到廣泛運用。
    的頭像 發(fā)表于 03-12 15:28 ?3301次閱讀
    金絲<b class='flag-5'>鍵</b><b class='flag-5'>合</b>的主要過程和關(guān)鍵參數(shù)

    一文詳解共晶技術(shù)

    技術(shù)主要分為直接和帶有中間層的。直接
    的頭像 發(fā)表于 03-04 17:10 ?2329次閱讀
    一文詳解共晶<b class='flag-5'>鍵</b><b class='flag-5'>合</b>技術(shù)

    PDMS和硅片芯片的方法

    以通過活化PDMS聚合物和基片(玻璃片、硅片)的表面,改變材料表面的化學性質(zhì),提高表面能,增強PDMS與玻片或硅片之間的親和力,從而有利于的進行。此外,等離子處理還能去除PDMS芯片、玻片和硅片表面的雜質(zhì),如灰塵、有機物殘留
    的頭像 發(fā)表于 01-09 15:32 ?1173次閱讀

    引線鍵合的基礎(chǔ)知識

    引線鍵合是一種將裸芯片的焊墊與封裝框架的引腳或基板上的金屬布線焊區(qū)通過金屬引線(如金線、銅線、鋁線等)進行連接的工藝。 這一步驟確保了芯片與外部電路的有效電氣連接和信號傳輸。
    的頭像 發(fā)表于 01-02 10:18 ?2544次閱讀
    引線<b class='flag-5'>鍵合</b>的基礎(chǔ)知識

    芯片技術(shù)

    芯片技術(shù)的重要性
    的頭像 發(fā)表于 12-30 13:56 ?1142次閱讀