chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

使用熱阻矩陣進(jìn)行LDO熱分析的指南

納芯微 ? 來(lái)源:納芯微 ? 作者:納芯微 ? 2024-09-03 09:34 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

低壓降線性穩(wěn)壓器LDO)因其工作原理,雖然能以低成本提供高電源質(zhì)量,但也會(huì)不可避免地產(chǎn)生損耗和發(fā)熱問(wèn)題。面對(duì)大壓降、大電流,LDO將長(zhǎng)時(shí)間處于較高的工作溫度范圍,可能影響其使用壽命和可靠性。因此,通過(guò)事先分析和評(píng)估LDO在特定工作環(huán)境下的溫度,并采取一定的措施,可以有效地避免芯片在長(zhǎng)時(shí)間的高溫下發(fā)生熱關(guān)斷和老化。

芯片的結(jié)溫主要取決于其功耗、散熱條件和環(huán)境溫度。因此,通過(guò)選擇不同的封裝版本來(lái)降低芯片的結(jié)與環(huán)境的熱阻,是一種降低結(jié)溫的有效解決方案。

目錄

1. 芯片熱阻介紹

2. 使用熱阻矩陣進(jìn)行熱分析

2.1. 對(duì)θJA的誤解

2.2. 理解ΨJC & θJC

3. 在EVM板上進(jìn)行LDO結(jié)溫和熱阻測(cè)試

1. 芯片熱阻介紹

由于芯片結(jié)構(gòu)復(fù)雜,通常通過(guò)仿真得到熱阻的理論計(jì)算值。而在芯片實(shí)際工程應(yīng)用中,工程師們將理論熱阻與實(shí)際應(yīng)用問(wèn)題相結(jié)合,加以歸類(lèi),得出一些具有明顯物理意義的熱阻。下圖展示了芯片焊接在PCB上時(shí)的熱阻網(wǎng)絡(luò)。

wKgZombWZ6-AESxWADrXwjjNwQo270.jpg

圖1 芯片熱阻網(wǎng)絡(luò)(來(lái)源:納芯微)

圖中,熱量從結(jié)向上通過(guò)封裝體傳遞到封裝外殼的頂部,它們之間的熱阻之和被稱(chēng)為θJC(top);熱量從結(jié)向下,通過(guò)粘合劑、引線框架基島傳遞到底部散熱焊盤(pán),其熱阻之和被稱(chēng)為θJB;此外,通過(guò)圖中所有材料和結(jié)構(gòu),從結(jié)到外部環(huán)境的所有方向的熱量,所有路徑的整體熱阻被稱(chēng)為θJA。

雖然這些熱阻可以通過(guò)建模仿真獲得,但由于存在制造誤差及其他原因,可能不甚準(zhǔn)確。因此,在工程實(shí)踐中,通常通過(guò)芯片發(fā)熱和溫差,來(lái)計(jì)算熱阻。熱阻的定義如下:

wKgaombWZ7GARQUTAABZNvugGmM238.jpg

(1-1)(來(lái)源:納芯微)

這意味著不論是減少芯片的發(fā)熱、改用散熱性能更好的大型封裝、增加散熱器和風(fēng)扇,還是改進(jìn)PCB的散熱設(shè)計(jì),都可以減少芯片溫升。

2. 使用熱阻矩陣進(jìn)行熱分析
2.1. 對(duì)θJA的誤解

我們可以在芯片的數(shù)據(jù)手冊(cè)(datasheet)中找到一個(gè)熱阻信息矩陣,其中就包含了上述θJA和θJC(top)等參數(shù)。下表摘自NSR31系列LDO的數(shù)據(jù)手冊(cè)。NSR31完整版數(shù)據(jù)手冊(cè)官網(wǎng)鏈接:https://www.novosns.com/10v-low-consumption-ldo-685

wKgZombWZ7GAJfwCAACUhGaKeRk631.png

表1 NSR31系列的熱阻信息(來(lái)源:納芯微)

需要注意的是,許多工程師會(huì)使用θJA、環(huán)境溫度和芯片功耗,來(lái)計(jì)算結(jié)溫,但這可能會(huì)產(chǎn)生較大的計(jì)算誤差。
從上節(jié)圖1的θJA定義可以看出,其值不僅由芯片本身決定,還很大程度上取決于具體使用的PCB。不同的應(yīng)用PCB的散熱面積、層數(shù)、銅厚、板厚、材料、器件布局等方面各不相同,因此,θJA的值在不同的應(yīng)用PCB上會(huì)有很大差異。大多數(shù)工程師都很關(guān)注自己PCB上芯片的狀態(tài)。因此,在熱設(shè)計(jì)中不建議使用θJA,θJA的主要優(yōu)勢(shì)在于比較不同封裝類(lèi)型的熱性能方面。

通常而言,幾乎所有芯片數(shù)據(jù)手冊(cè)中的θJA,都是使用行業(yè)標(biāo)準(zhǔn)板測(cè)量或仿真而得的示例值。這些行業(yè)標(biāo)準(zhǔn)平臺(tái)被稱(chēng)為JEDEC High-K或JEDEC Low-K板。此外,這些JEDEC 板僅由安裝在3"x3"板上的一個(gè)IC器件組成,與實(shí)際工程應(yīng)用中的PCB有顯著差異。

2.2. 理解ΨJC& θJC

為了解決應(yīng)用端的實(shí)際問(wèn)題,表中還提供了熱特性參數(shù)Ψ。這是聯(lián)合電子器件工程委員會(huì)(JEDEC)在20世紀(jì)90年代定義的熱指標(biāo)。就評(píng)估現(xiàn)代封裝器件結(jié)溫而言,它是一個(gè)更為便利的指標(biāo)。Ψ代表的是結(jié)與參考點(diǎn)之間的溫差與芯片消耗的總功率的比值,它只是一個(gè)構(gòu)造出的參數(shù)。雖然其公式和單位(°C/W)與Rθ非常相似,但Ψ實(shí)際上并不是一個(gè)“熱阻”參數(shù),其定義如下:

wKgaombWZ7KAXIVwAAAzRCXxeIM411.jpg

(2-1)(來(lái)源:納芯微)

其中,ΨJC是結(jié)到殼的熱特性參數(shù),TJC是結(jié)到殼的溫差,PD是芯片的總耗散功率。因此,求TJ時(shí),首先要測(cè)量外殼溫度TC,計(jì)算芯片的總耗散功率PD,再使用以下公式計(jì)算:

wKgZombWZ7KAbXhDAAAk2trneQI772.jpg

(2-2)(來(lái)源:納芯微)

其中,ΨJC可以通過(guò)數(shù)據(jù)手冊(cè)中的熱阻信息矩陣獲取。當(dāng)芯片外部散熱條件固定時(shí),ΨJC與θJC成正比。與不同應(yīng)用端差異很大的θJA相比,雖然ΨJC也受到PCB散熱能力的影響,但我們可以近似地認(rèn)為,在大多數(shù)應(yīng)用中,該影響并不顯著。具體原因如下。

公式(2-2)可以進(jìn)一步寫(xiě)為:

wKgaombWZ7KAAqYMAAA3wiHDxak541.jpg

(2-3)(來(lái)源:納芯微)

式中:PC是從結(jié)向上通過(guò)封裝體傳遞到封裝外殼頂部的熱功率。由此可得:

wKgZombWZ7OAAsiyAAAl05QURmQ264.jpg

(2-4)(來(lái)源:納芯微)

即ΨJC與θJA成正比,其值為從結(jié)到殼頂部的熱功率與芯片總耗散功率的比值。

wKgaombWZ7OAf6n1AAC877_dJyY101.jpg

圖2 芯片熱阻網(wǎng)絡(luò)簡(jiǎn)圖(來(lái)源:納芯微)

如圖2所示,根據(jù)熱阻網(wǎng)絡(luò)的“并聯(lián)電阻分流公式”關(guān)系,功率比相當(dāng)于熱阻比的倒數(shù):

wKgZombWZ7SAQb0rAABePYWRvj8068.jpg

(2-5)(來(lái)源:納芯微)

式中:θCA為殼到環(huán)境的熱阻。當(dāng)沒(méi)有在芯片表面安裝散熱器時(shí),θCA遠(yuǎn)大于θJC。由此可得,ΨJC小于θJA,因此,在工程上的實(shí)際PCB中,使用ΨJC估算結(jié)溫的誤差,遠(yuǎn)小于使用θJA來(lái)估算的誤差。


3. 在EVM板上進(jìn)行LDO結(jié)溫和熱阻測(cè)試
由于集成電路外部被塑封料(mold compound)包裹,結(jié)沒(méi)有暴露在外,因此我們無(wú)法通過(guò)熱電偶或紅外溫度計(jì),直接測(cè)量芯片內(nèi)部結(jié)點(diǎn)的溫度。對(duì)于許多大型封裝集成電路,例如CPUGPU,通常會(huì)集成一個(gè)熱傳感器,用于測(cè)量TJ。但對(duì)于小型封裝集成電路,由于受到尺寸和成本的限制,大都沒(méi)有這種TJ傳感器的功能。因此,我們必須通過(guò)測(cè)試和熱分析來(lái)估算TJ。
NSR31/33/35系列LDO有8種封裝,具體信息如表2所示。采用不同封裝的各類(lèi)熱阻已在芯片數(shù)據(jù)手冊(cè)的熱阻矩陣中標(biāo)明。其信息概述如下。

wKgaombWZ7WAdrGQAAEjRZK9uQ8463.png

表2 NSR3x系列的熱阻信息(來(lái)源:納芯微)

(1)熱數(shù)據(jù)基于:JEDEC標(biāo)準(zhǔn)高K型材、JESD 51-7、四層板。

表2中所有參數(shù)均根據(jù)JEDEC標(biāo)準(zhǔn)獲得。通過(guò)表θJA比較可知,SOT-23-5L封裝的散熱性能最差,TO263-5封裝的散熱性能最好。當(dāng)需要獲取LDO在特定應(yīng)用電路板上的結(jié)溫時(shí),可以使用公式(2-2):

式中:

wKgZombWZ7WANZAXAABHlpH8CtY825.jpg

(3-1)(來(lái)源:納芯微)

式中:VIN代表LDO輸入電壓,VOUT代表LDO輸出電壓,IOUT代表LDO輸出電流。

接下來(lái)以NSR31050-QSTAR為例,在EVM板上測(cè)量和計(jì)算其結(jié)溫和實(shí)際熱阻θ'JA,以供參考。具體來(lái)說(shuō),EVM板采用四層設(shè)計(jì)(88mm x 53mm),銅厚為1盎司,總散熱面積約為4600平方毫米,如圖3所示。

wKgaombWZ7aABifqAAXRlKbSZFQ321.jpg

圖3 NSR31050-QSTAR EVM板(來(lái)源:納芯微)

在室溫通風(fēng)恒定的情況下,通過(guò)給LDO施加一定的電壓和負(fù)載,可以將其功耗從0W增加到接近熱關(guān)斷。在不同功耗設(shè)置下,讓芯片工作5分鐘溫度穩(wěn)定后,使用手持式紅外測(cè)溫儀測(cè)量芯片頂殼的溫度。利用環(huán)境溫度、殼溫、功耗和ΨJC的公式,來(lái)對(duì)EVM板上芯片的結(jié)溫和熱阻θ'JA進(jìn)行估算。結(jié)果如表3所示。

wKgZombWZ7aAEhvVAAD5KFuhueM741.png

表3 NSR3x系列的熱信息(來(lái)源:納芯微)

wKgaombWZ7iAAoXBAAVoKWQW_vM715.jpg

圖4 部分殼溫的紅外測(cè)量結(jié)果(來(lái)源:納芯微)

從表3可以看出,在此EVM板上,測(cè)得的結(jié)到環(huán)境的熱阻θ'JA約為77.5°C/W,遠(yuǎn)低于JEDEC 標(biāo)準(zhǔn)的207.9°C/W。

綜上所述,在實(shí)際應(yīng)用中,芯片存在多種熱傳導(dǎo)途徑,熱量亦通過(guò)多個(gè)通道傳遞。我們很難像估算總功耗一樣,準(zhǔn)確得到由特定途徑傳導(dǎo)的功耗。因此,熱特性參數(shù)ΨJC更適合用于估算結(jié)溫,利用熱特性參數(shù)ΨJC,同時(shí)結(jié)合公式(3-1)來(lái)估算結(jié)溫更為準(zhǔn)確和嚴(yán)謹(jǐn)。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • ldo
    ldo
    +關(guān)注

    關(guān)注

    35

    文章

    2325

    瀏覽量

    156342
  • 熱阻
    +關(guān)注

    關(guān)注

    1

    文章

    114

    瀏覽量

    16853
  • 矩陣
    +關(guān)注

    關(guān)注

    1

    文章

    434

    瀏覽量

    35234
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    LED封裝器件測(cè)試與散熱能力評(píng)估

    概念與重要性是衡量熱量在熱流路徑上所遇阻力的物理量,它反映了介質(zhì)或介質(zhì)間傳熱能力的強(qiáng)弱,具體表現(xiàn)為1W熱量引起的溫升大小,單位為℃/W或K/W??梢詫崃勘茸麟娏?,溫差比作電壓
    的頭像 發(fā)表于 06-04 16:18 ?211次閱讀
    LED封裝器件<b class='flag-5'>熱</b><b class='flag-5'>阻</b>測(cè)試與散熱能力評(píng)估

    MOSFET參數(shù)解讀

    MOSFET的(Rth)用來(lái)表征器件散熱的能力,即芯片在工作時(shí)內(nèi)部結(jié)產(chǎn)生的熱量沿著表面金屬及塑封料等材料向散熱器或者環(huán)境傳遞過(guò)程中所遇到的阻力,單位是℃/W,其值越小越好。
    的頭像 發(fā)表于 06-03 15:30 ?702次閱讀
    MOSFET<b class='flag-5'>熱</b><b class='flag-5'>阻</b>參數(shù)解讀

    基于RCSPICE模型的GaNPX?和PDFN封裝的特性建模

    GaN Systems提供RC模型,使客戶能夠使用SPICE進(jìn)行詳細(xì)的模擬。 模型基于有限元分析(FEA)
    的頭像 發(fā)表于 03-11 18:32 ?663次閱讀
    基于RC<b class='flag-5'>熱</b><b class='flag-5'>阻</b>SPICE模型的GaNPX?和PDFN封裝的<b class='flag-5'>熱</b>特性建模

    分析儀測(cè)試分析溫度的方法

    分析儀(TGA)主要用于對(duì)樣品在熱力學(xué)變化過(guò)程中產(chǎn)生的失重、分解過(guò)程進(jìn)行記錄和分析。因此
    的頭像 發(fā)表于 03-04 14:22 ?519次閱讀
    <b class='flag-5'>熱</b>重<b class='flag-5'>分析</b>儀測(cè)試<b class='flag-5'>熱</b><b class='flag-5'>分析</b>溫度的方法

    功率器件設(shè)計(jì)基礎(chǔ)知識(shí)

    功率器件設(shè)計(jì)是實(shí)現(xiàn)IGBT、碳化硅SiC等高功率密度器件可靠運(yùn)行的基礎(chǔ)。掌握功率半導(dǎo)體的設(shè)計(jì)基礎(chǔ)知識(shí),不僅有助于提高功率器件的利用率和系統(tǒng)可靠性,還能有效降低系統(tǒng)成本。本文將從設(shè)計(jì)的基本概念、散熱形式、
    的頭像 發(fā)表于 02-03 14:17 ?742次閱讀

    什么是分析(TGA)

    制備的關(guān)鍵步驟以及對(duì)常見(jiàn)疑問(wèn)的解答。工作原理分析技術(shù)監(jiān)測(cè)材料在受控溫度環(huán)境中的質(zhì)量變化。金鑒實(shí)驗(yàn)室的TGA測(cè)試在恒定的升溫速率下進(jìn)行,樣品被放置于高精度天平上,
    的頭像 發(fā)表于 01-09 11:02 ?1072次閱讀
    什么是<b class='flag-5'>熱</b>重<b class='flag-5'>分析</b>(TGA)

    同步分析儀:探索物質(zhì)特性的利器

    在科學(xué)研究與工業(yè)生產(chǎn)的諸多領(lǐng)域,深入了解物質(zhì)在不同溫度下的物理和化學(xué)變化至關(guān)重要。同步分析儀,作為一款強(qiáng)大的分析儀器,正發(fā)揮著不可或缺的作用。同步
    的頭像 發(fā)表于 01-09 10:46 ?479次閱讀
    同步<b class='flag-5'>熱</b><b class='flag-5'>分析</b>儀:探索物質(zhì)<b class='flag-5'>熱</b>特性的利器

    電源設(shè)計(jì)之對(duì)的認(rèn)識(shí)

    電源設(shè)計(jì)之--對(duì)的認(rèn)識(shí) 之前做了這么多電源還有高頻機(jī),我一直沒(méi)有想過(guò)如何設(shè)計(jì)散熱,或者說(shuō)怎么樣的散熱設(shè)計(jì)才不會(huì)讓芯片過(guò)溫而損壞。對(duì)于發(fā)熱元件,散熱是必須要考慮的事情,好的散熱有利于元件最大化
    的頭像 發(fā)表于 12-18 11:24 ?541次閱讀
    電源設(shè)計(jì)之對(duì)<b class='flag-5'>熱</b><b class='flag-5'>阻</b>的認(rèn)識(shí)

    ADS58C20有頂面(9.3度/W)和底面(0.5度/W),請(qǐng)問(wèn)一下折算為一面的怎么計(jì)算?

    ADS58C20有頂面(9.3度/W)和底面(0.5度/W),請(qǐng)問(wèn)一下折算為一面的怎么計(jì)算?
    發(fā)表于 12-12 06:43

    THS1408的Rjb是多大啊,怎么計(jì)算?

    THS1408的Rjb是多大啊,怎么計(jì)算?
    發(fā)表于 11-15 06:04

    導(dǎo)熱界面材料對(duì)降低接觸的影響分析

    要求嚴(yán)格的場(chǎng)合?!?銅箔:具有良好的導(dǎo)電和導(dǎo)熱性能,適用于需要同時(shí)考慮電磁屏蔽和散熱的場(chǎng)合。 三、實(shí)驗(yàn)驗(yàn)證與分析為了驗(yàn)證導(dǎo)熱界面材料對(duì)降低接觸的影響,本文進(jìn)行了如下實(shí)驗(yàn):1. 實(shí)驗(yàn)
    發(fā)表于 11-04 13:34

    功率器件的設(shè)計(jì)基礎(chǔ)(二)——的串聯(lián)和并聯(lián)

    設(shè)計(jì)基礎(chǔ)系列文章將比較系統(tǒng)地講解熱設(shè)計(jì)基礎(chǔ)知識(shí),相關(guān)標(biāo)準(zhǔn)和工程測(cè)量方法。第一講《功率器件設(shè)計(jì)基礎(chǔ)(一)----功率半導(dǎo)體的》,已經(jīng)把
    的頭像 發(fā)表于 10-29 08:02 ?911次閱讀
    功率器件的<b class='flag-5'>熱</b>設(shè)計(jì)基礎(chǔ)(二)——<b class='flag-5'>熱</b><b class='flag-5'>阻</b>的串聯(lián)和并聯(lián)

    干貨!PCB Layout 設(shè)計(jì)指導(dǎo)

    ,Middle layer 1 和 2 只進(jìn)行 5505mm2 的大面積銅箔 Layout。但是、Middle layer 2 沒(méi)有 和過(guò)孔連接。在這種情況下,改變 Bottom layer 銅箔面積時(shí)
    發(fā)表于 09-20 14:07

    關(guān)于OPA564疑問(wèn)求解

    上圖是OPA564規(guī)格書(shū)中的參數(shù): 問(wèn)題: 1)如果使用DWP封裝,按照參考的PCB銅皮散熱設(shè)計(jì),是否總的就是為83W/°C(33+50); 2)如果使用DWD封裝,自己選
    發(fā)表于 09-05 07:07

    THS4271的Rjb是多大啊,怎么計(jì)算?

    THS4271的Rjb是多大啊,怎么計(jì)算?
    發(fā)表于 07-30 07:11