chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Facebook推出ONNX,旨在為不同編程框架的神經(jīng)網(wǎng)絡(luò)創(chuàng)建共享模型

zhKF_jqr_AI ? 2017-12-28 16:12 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

今年9月,F(xiàn)acebook宣布推出“開源神經(jīng)網(wǎng)絡(luò)交換”(ONNX),呼吁其他公司加入,旨在為不同編程框架的神經(jīng)網(wǎng)絡(luò)創(chuàng)建共享模型。今天,F(xiàn)acebook聯(lián)合AWS和微軟宣布,在合作伙伴的支持下,第一個正式版本的ONNX已經(jīng)正式投入使用。

目前機器學習生態(tài)系統(tǒng)中的一個關(guān)鍵問題是,開發(fā)和執(zhí)行神經(jīng)網(wǎng)絡(luò)和其他機器學習系統(tǒng)有很多不同的框架,但它們都是截然不同的,而且不支持相互操作。ONNX的出現(xiàn)將為開發(fā)者提供更強的工具組合和更簡單的傳輸模型,從而有助于創(chuàng)建一個自由、創(chuàng)新的AI生態(tài)系統(tǒng)。自推出以來,ONNX就得到了各界的響應(yīng)。AMDARM、IBM、英特爾、華為、英偉達、高通都宣布支持ONNX,除此之外還有許多公司都為其推出做出了貢獻。

目前ONNX已支持Caffe2、微軟的Cognitive Toolkit、亞馬遜偏愛的機器學習框架Apache MXNet(9月的最初版本上是不支持的該框架的)、PyTorch和英偉達的TensorRT。雖然還不支持TensorFlow等其他的框架,但ONNX為它們提供了相應(yīng)的轉(zhuǎn)換器。

當前的ONNX主要是為視覺應(yīng)用設(shè)計的,將來研究人員打算將其應(yīng)用于更多領(lǐng)域,包括語言建模等動態(tài)模型。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4819

    瀏覽量

    106072
  • Facebook
    +關(guān)注

    關(guān)注

    3

    文章

    1432

    瀏覽量

    57937
  • 共享
    +關(guān)注

    關(guān)注

    1

    文章

    72

    瀏覽量

    13664

原文標題:Facebook開源項目ONNX正式使用,欲打造共享神經(jīng)網(wǎng)絡(luò)

文章出處:【微信號:jqr_AI,微信公眾號:論智】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    神經(jīng)元,但卻能產(chǎn)生復(fù)雜的行為。受此啟發(fā),與傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)相比,LNN旨在通過模擬大腦中神經(jīng)元之間的動態(tài)連接來處理信息,這種網(wǎng)絡(luò)能夠順序處理數(shù)
    的頭像 發(fā)表于 09-28 10:03 ?321次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真模型解決方案

    在基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真(DPD)模型中,使用不同的激活函數(shù)對整個系統(tǒng)性能和能效有何影響?
    的頭像 發(fā)表于 08-29 14:01 ?2759次閱讀

    無刷電機小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機數(shù)學模型的推導,得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進遺傳算法來訓練網(wǎng)絡(luò)結(jié)構(gòu)與參數(shù),借助
    發(fā)表于 06-25 13:06

    基于FPGA搭建神經(jīng)網(wǎng)絡(luò)的步驟解析

    本文的目的是在一個神經(jīng)網(wǎng)絡(luò)已經(jīng)通過python或者MATLAB訓練好的神經(jīng)網(wǎng)絡(luò)模型,將訓練好的模型的權(quán)重和偏置文件以TXT文件格式導出,然后通過python程序?qū)xt文件轉(zhuǎn)化為coe
    的頭像 發(fā)表于 06-03 15:51 ?708次閱讀
    基于FPGA搭建<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的步驟解析

    神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計數(shù)據(jù)怎么查看?

    無法觀察神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計數(shù)據(jù)
    發(fā)表于 03-06 07:10

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?1038次閱讀

    如何優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學習率

    優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學習率是提高模型訓練效率和性能的關(guān)鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡(luò)學習率的方法: 一、理解學習率的重要性 學習率決定了模型參數(shù)在每次迭代時更新的幅度。過大的學習率可
    的頭像 發(fā)表于 02-12 15:51 ?1268次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機器學習模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?1273次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學習的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學習之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1180次閱讀

    如何訓練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓練過程主要分為兩個階段:前向傳播和反向傳播。以下是訓練BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:10 ?1225次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 01-09 10:24 ?1785次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    AI模型部署邊緣設(shè)備的奇妙之旅:如何實現(xiàn)手寫數(shù)字識別

    )是一種用于在各種深度學習框架之間轉(zhuǎn)換神經(jīng)網(wǎng)絡(luò)模型的開放格式。它允許用戶將訓練好的模型從深度學習框架轉(zhuǎn)換為其他
    發(fā)表于 12-06 17:20

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)工具與框架

    : TensorFlow是由Google Brain團隊開發(fā)的開源機器學習框架,它支持多種深度學習模型的構(gòu)建和訓練,包括卷積神經(jīng)網(wǎng)絡(luò)。TensorFlow以其靈活性和可擴展性而聞名,適用于研究和生產(chǎn)環(huán)境。 特點: 靈活性: Te
    的頭像 發(fā)表于 11-15 15:20 ?934次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學習領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型
    的頭像 發(fā)表于 11-15 14:53 ?2249次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機器學習領(lǐng)域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1799次閱讀