chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

計算機(jī)視覺與圖像處理、模式識別、機(jī)器學(xué)習(xí)學(xué)科之間的關(guān)系

Dbwd_Imgtec ? 2018-01-26 17:10 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在我的理解里,要實現(xiàn)計算機(jī)視覺必須有圖像處理的幫助,而圖像處理倚仗與模式識別的有效運用,而模式識別是人工智能領(lǐng)域的一個重要分支,人工智能與機(jī)器學(xué)習(xí)密不可分。縱觀一切關(guān)系,發(fā)現(xiàn)計算機(jī)視覺的應(yīng)用服務(wù)于機(jī)器學(xué)習(xí)。各個環(huán)節(jié)缺一不可,相輔相成。

計算機(jī)視覺(computer vision):用計算機(jī)來模擬人的視覺機(jī)理獲取和處理信息的能力。就是指用攝影機(jī)和電腦代替人眼對目標(biāo)進(jìn)行識別、跟蹤和測量等機(jī)器視覺,并進(jìn)一步做圖形處理,用電腦處理成為更適合人眼觀察或傳送給儀器檢測的圖像。

計算機(jī)視覺研究相關(guān)的理論和技術(shù),試圖建立能夠從圖像或者多維數(shù)據(jù)中獲取‘信息’的人工智能系統(tǒng)。計算機(jī)視覺的挑戰(zhàn)是要為計算機(jī)和機(jī)器人開發(fā)具有與人類水平相當(dāng)?shù)囊曈X能力。

機(jī)器視覺需要圖象信號,紋理和顏色建模,幾何處理和推理,以及物體建模。一個有能力的視覺系統(tǒng)應(yīng)該把所有這些處理都緊密地集成在一起。

圖像處理(image processing):用計算機(jī)對圖像進(jìn)行分析,以達(dá)到所需結(jié)果的技術(shù)。又稱影像處理。

圖像處理一般指數(shù)字圖像處理。數(shù)字圖像是指用數(shù)字?jǐn)z像機(jī)、掃描儀等設(shè)備經(jīng)過采樣和數(shù)字化得到的一個大的二維數(shù)組,該數(shù)組的元素稱為像素,其值為一整數(shù),稱為灰度值。

圖像處理技術(shù)的主要內(nèi)容包括圖像壓縮,增強(qiáng)和復(fù)原,匹配、描述和識別3個部分。常見的處理有圖像數(shù)字化、圖像編碼、圖像增強(qiáng)、圖像復(fù)原、圖像分割和圖像分析等。

模式識別(Pattern Recognition)是指對表征事物或現(xiàn)象的各種形式的(數(shù)值的、文字的和邏輯關(guān)系的)信息進(jìn)行處理和分析,以對事物或現(xiàn)象進(jìn)行描述、辨認(rèn)、分類和解釋的過程,是信息科學(xué)和人工智能的重要組成部分。

模式識別又常稱作模式分類,從處理問題的性質(zhì)和解決問題的方法等角度,模式識別分為有監(jiān)督的分類(Supervised Classification)和無監(jiān)督的分類(Unsupervised Classification)兩種。模式還可分成抽象的和具體的兩種形式。前者如意識、思想、議論等,屬于概念識別研究的范疇,是人工智能的另一研究分支。我們所指的模式識別主要是對語音波形、地震波、心電圖、腦電圖、圖片、照片、文字、符號、生物傳感器等對象的具體模式進(jìn)行辨識和分類。

模式識別研究主要集中在兩方面:

一是研究生物體(包括人)是如何感知對象的,屬于認(rèn)識科學(xué)的范疇;

二是在給定的任務(wù)下,如何用計算機(jī)實現(xiàn)模式識別的理論和方法。

應(yīng)用計算機(jī)對一組事件或過程進(jìn)行辨識和分類,所識別的事件或過程可以是文字、聲音、圖像等具體對象,也可以是狀態(tài)、程度等抽象對象。這些對象與數(shù)字形式的信息相區(qū)別,稱為模式信息。

模式識別與統(tǒng)計學(xué)、心理學(xué)、語言學(xué)、計算機(jī)科學(xué)、生物學(xué)、控制論等都有關(guān)系。它與人工智能、圖像處理的研究有交叉關(guān)系。

機(jī)器學(xué)習(xí)(Machine Learning)是研究計算機(jī)怎樣模擬或?qū)崿F(xiàn)人類的學(xué)習(xí)行為,以獲取新的知識或技能,重新組織已有的知識結(jié)構(gòu)使之不斷改善自身的性能。它是人工智能的核心,是使計算機(jī)具有智能的根本途徑,其應(yīng)用遍及人工智能的各個領(lǐng)域,它主要使用歸納、綜合而不是演繹。

機(jī)器學(xué)習(xí)在人工智能的研究中具有十分重要的地位。一個不具有學(xué)習(xí)能力的智能系統(tǒng)難以稱得上是一個真正的智能系統(tǒng),但是以往的智能系統(tǒng)都普遍缺少學(xué)習(xí)的能力。隨著人工智能的深入發(fā)展,這些局限性表現(xiàn)得愈加突出。正是在這種情形下,機(jī)器學(xué)習(xí)逐漸成為人工智能研究的核心之一。它的應(yīng)用已遍及人工智能的各個分支,如專家系統(tǒng)、自動推理、自然語言理解、模式識別、計算機(jī)視覺、智能機(jī)器人等領(lǐng)域。

機(jī)器學(xué)習(xí)的研究是根據(jù)生理學(xué)、認(rèn)知科學(xué)等對人類學(xué)習(xí)機(jī)理的了解,建立人類學(xué)習(xí)過程的計算模型或認(rèn)識模型,發(fā)展各種學(xué)習(xí)理論和學(xué)習(xí)方法,研究通用的學(xué)習(xí)算法并進(jìn)行理論上的分析,建立面向任務(wù)的具有特定應(yīng)用的學(xué)習(xí)系統(tǒng)。這些研究目標(biāo)相互影響相互促進(jìn)。

人類研究計算機(jī)的目的,是為了提高社會生產(chǎn)力水平,提高生活質(zhì)量,把人從單調(diào)復(fù)雜甚至危險的工作中解救出來。今天的計算機(jī)在計算速度上已經(jīng)遠(yuǎn)遠(yuǎn)超過了人,然而在很多方面,特別是在人類智能活動有關(guān)的方面例如在視覺功能、聽覺功能、嗅覺功能、自然語言理解能力功能等等方面,還不如人。

這種現(xiàn)狀無法滿足一些高級應(yīng)用的要求。例如,我們希望計算機(jī)能夠及早地發(fā)現(xiàn)路上的可疑情況并提醒汽車駕駛員以避免發(fā)生事故,我們更希望計算機(jī)能幫助我們進(jìn)行自動駕駛,目前的技術(shù)還不足以滿足諸如此類高級應(yīng)用的要求,還需要更多的人工智能研究成果和系統(tǒng)實現(xiàn)的經(jīng)驗。

什么是人工智能呢?

人工智能,是由人類設(shè)計并在計算機(jī)環(huán)境下實現(xiàn)的模擬或再現(xiàn)某些人智能行為的技術(shù)。一般認(rèn)為,人類智能活動可以分為兩類:感知行為與思維活動。模擬感知行為的人工智能研究的一些例子包括語音識別、話者識別等與人類的聽覺功能有關(guān)的“計算機(jī)聽覺”,物體三維表現(xiàn)的形狀知識、距離、速度感知等與人類視覺有關(guān)的“計算機(jī)視覺”,等等。模擬思維活動的人工智能研究的例子包括符號推理、模糊推理、定理證明等與人類思維有關(guān)的“計算機(jī)思維”,等等。

從圖像處理和模式識別發(fā)展起來的計算機(jī)視覺研究對象之一是如何利用二維投影圖像恢復(fù)三維景物世界。計算機(jī)視覺使用的理論方法主要是基于幾何、概率和運動學(xué)計算與三維重構(gòu)的視覺計算理論,它的基礎(chǔ)包括射影幾何學(xué)、剛體運動力學(xué)、概率論與隨機(jī)過程、圖像處理、人工智能等理論。

計算機(jī)視覺要達(dá)到的基本目的有以下幾個:

(1) 根據(jù)一幅或多幅二維投影圖像計算出觀察點到目標(biāo)物體的距離;

(2) 根據(jù)一幅或多幅二維投影圖像計算出目標(biāo)物體的運動參數(shù);

(3) 根據(jù)一幅或多幅二維投影圖像計算出目標(biāo)物體的表面物理特性;

(4) 根據(jù)多幅二維投影圖像恢復(fù)出更大空間區(qū)域的投影圖像。

計算機(jī)視覺要達(dá)到的最終目的是實現(xiàn)利用計算機(jī)對于三維景物世界的理解,即實現(xiàn)人的視覺系統(tǒng)的某些功能。

在計算機(jī)視覺領(lǐng)域里,醫(yī)學(xué)圖像分析、光學(xué)文字識別對模式識別的要求需要提到一定高度。又如模式識別中的預(yù)處理和特征抽取環(huán)節(jié)應(yīng)用圖像處理的技術(shù);圖像處理中的圖像分析也應(yīng)用模式識別的技術(shù)。在計算機(jī)視覺的大多數(shù)實際應(yīng)用當(dāng)中,計算機(jī)被預(yù)設(shè)為解決特定的任務(wù),然而基于機(jī)器學(xué)習(xí)的方法正日漸普及,一旦機(jī)器學(xué)習(xí)的研究進(jìn)一步發(fā)展,未來“泛用型”的電腦視覺應(yīng)用或許可以成真。

人工智能所研究的一個主要問題是:如何讓系統(tǒng)具備“計劃”和“決策能力”?從而使之完成特定的技術(shù)動作(例如:移動一個機(jī)器人通過某種特定環(huán)境)。這一問題便與計算機(jī)視覺問題息息相關(guān)。在這里,計算機(jī)視覺系統(tǒng)作為一個感知器,為決策提供信息。另外一些研究方向包括模式識別和機(jī)器學(xué)習(xí)(這也隸屬于人工智能領(lǐng)域,但與計算機(jī)視覺有著重要聯(lián)系),也由此,計算機(jī)視覺時常被看作人工智能與計算機(jī)科學(xué)的一個分支。

機(jī)器學(xué)習(xí)是研究計算機(jī)怎樣模擬或?qū)崿F(xiàn)人類的學(xué)習(xí)行為,以獲取新的知識或技能,重新組織已有的知識結(jié)構(gòu)使之不斷改善自身的性能。它是人工智能的核心,是使計算機(jī)具有智能的根本途徑,其應(yīng)用遍及人工智能的各個領(lǐng)域,它主要使用歸納、綜合而不是演譯。

為了達(dá)到計算機(jī)視覺的目的,有兩種技術(shù)途徑可以考慮。

第一種是仿生學(xué)方法,即從分析人類視覺的過程入手,利用大自然提供給我們的最好參考系——人類視覺系統(tǒng),建立起視覺過程的計算模型,然后用計算機(jī)系統(tǒng)實現(xiàn)之。

第二種是工程方法,即脫離人類視覺系統(tǒng)框框的約束,利用一切可行和實用的技術(shù)手段實現(xiàn)視覺功能。此方法的一般做法是,將人類視覺系統(tǒng)作為一個黑盒子對待,實現(xiàn)時只關(guān)心對于某種輸入,視覺系統(tǒng)將給出何種輸出。

這兩種方法理論上都是可以使用的,但面臨的困難是,人類視覺系統(tǒng)對應(yīng)某種輸入的輸出到底是什么,這是無法直接測得的。而且由于人的智能活動是一個多功能系統(tǒng)綜合作用的結(jié)果,即使是得到了一個輸入輸出對,也很難肯定它是僅由當(dāng)前的輸入視覺刺激所產(chǎn)生的響應(yīng),而不是一個與歷史狀態(tài)綜合作用的結(jié)果。

不難理解,計算機(jī)視覺的研究具有雙重意義。

其一,是為了滿足人工智能應(yīng)用的需要,即用計算機(jī)實現(xiàn)人工的視覺系統(tǒng)的需要。這些成果可以安裝在計算機(jī)和各種機(jī)器上,使計算機(jī)和機(jī)器人能夠具有“看”的能力。

其二,視覺計算模型的研究結(jié)果反過來對于我們進(jìn)一步認(rèn)識和研究人類視覺系統(tǒng)本身的機(jī)理,甚至人腦的機(jī)理,也同樣具有相當(dāng)大的參考意義。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 圖像處理
    +關(guān)注

    關(guān)注

    27

    文章

    1337

    瀏覽量

    58900
  • 模式識別
    +關(guān)注

    關(guān)注

    3

    文章

    45

    瀏覽量

    14676
  • 計算機(jī)視覺
    +關(guān)注

    關(guān)注

    9

    文章

    1713

    瀏覽量

    47324
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8528

    瀏覽量

    135870

原文標(biāo)題:計算機(jī)視覺與圖像處理、模式識別、機(jī)器學(xué)習(xí)學(xué)科之間的關(guān)系

文章出處:【微信號:Imgtec,微信公眾號:Imagination Tech】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    易控智駕榮獲計算機(jī)視覺頂會CVPR 2025認(rèn)可

    近日,2025年國際計算機(jī)視覺模式識別頂級會議(IEEE/CVF Conference on Computer Vision and Pattern Recognition,CVPR 2025)在美國田納西州納什維爾召開。
    的頭像 發(fā)表于 07-29 16:54 ?841次閱讀

    基于LockAI視覺識別模塊:手寫數(shù)字識別

    手寫數(shù)字識別是一種經(jīng)典的模式識別圖像處理問題,旨在通過計算機(jī)自動識別用戶手寫的數(shù)字。 本文將教
    發(fā)表于 06-30 16:45

    基于LockAI視覺識別模塊:手寫數(shù)字識別

    手寫數(shù)字識別是一種經(jīng)典的模式識別圖像處理問題,旨在通過計算機(jī)自動識別用戶手寫的數(shù)字。本文將教會
    的頭像 發(fā)表于 06-30 15:44 ?698次閱讀
    基于LockAI<b class='flag-5'>視覺</b><b class='flag-5'>識別</b>模塊:手寫數(shù)字<b class='flag-5'>識別</b>

    工業(yè)相機(jī)圖像采集卡:機(jī)器視覺的核心樞紐

    應(yīng)用廣泛。工業(yè)相機(jī)圖像采集卡的主要功能在機(jī)器視覺系統(tǒng)中,工業(yè)相機(jī)負(fù)責(zé)捕獲目標(biāo)對象的圖像,而圖像采集卡則負(fù)責(zé)將這些
    的頭像 發(fā)表于 05-21 12:13 ?375次閱讀
    工業(yè)相機(jī)<b class='flag-5'>圖像</b>采集卡:<b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺</b>的核心樞紐

    基于LockAI視覺識別模塊:C++圖像的基本運算

    圖像處理中,理解圖像的基本操作是掌握計算機(jī)視覺技術(shù)的關(guān)鍵。本文章將介紹基于LockAI視覺
    的頭像 發(fā)表于 05-06 16:20 ?419次閱讀
    基于LockAI<b class='flag-5'>視覺</b><b class='flag-5'>識別</b>模塊:C++<b class='flag-5'>圖像</b>的基本運算

    【「# ROS 2智能機(jī)器人開發(fā)實踐」閱讀體驗】視覺實現(xiàn)的基礎(chǔ)算法的應(yīng)用

    必須嚴(yán)謹(jǐn),并定期重新校準(zhǔn)。 OpenCV與ROS2的無縫結(jié)合 OpenCV是計算機(jī)視覺的核心工具,書中介紹了如何在ROS2中調(diào)用OpenCV進(jìn)行圖像處理(如邊緣檢測、顏色空間轉(zhuǎn)換等
    發(fā)表于 05-03 19:41

    【「# ROS 2智能機(jī)器人開發(fā)實踐」閱讀體驗】+ROS2應(yīng)用案例

    地圖構(gòu)建,包括算法原理介紹、安裝與配置方法、仿真環(huán)境中的SLAM以及真實機(jī)器人上的SLAM。 這一過程不僅涉及到計算機(jī)視覺機(jī)器人學(xué)的知識,還需要對ROS 2的節(jié)點管理和數(shù)據(jù)
    發(fā)表于 04-27 11:42

    電機(jī)故障模式識別軟件開發(fā)

    本軟件基于 MATTAB6.5中的(H,神經(jīng)網(wǎng)絡(luò)以及信號處理工其箱開發(fā)出了電機(jī)故障診斷的計算機(jī)仿真平臺。使用者不需要編程序,只需要在友好且交互性強(qiáng)的圖形界面中按所給的格式及提示輸入相應(yīng)的參數(shù)即可完成
    發(fā)表于 04-07 17:33

    工業(yè)圖像采集卡:機(jī)器視覺的基石與智能制造的引擎

    工業(yè)圖像采集卡,作為機(jī)器視覺系統(tǒng)中的關(guān)鍵組成部分,其重要性不言而喻。它如同機(jī)器的“眼睛”,負(fù)責(zé)捕捉現(xiàn)實世界的圖像信息,并將其轉(zhuǎn)化為可供
    的頭像 發(fā)表于 03-10 13:25 ?522次閱讀
    工業(yè)<b class='flag-5'>圖像</b>采集卡:<b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺</b>的基石與智能制造的引擎

    Arm KleidiCV與OpenCV集成助力移動端計算機(jī)視覺性能優(yōu)化

    生成式及多模態(tài)人工智能 (AI) 工作負(fù)載的廣泛增長,推動了對計算機(jī)視覺 (CV) 技術(shù)日益高漲的需求。此類技術(shù)能夠解釋并分析源自現(xiàn)實世界的視覺信息,并可應(yīng)用于人臉識別、照片分類、濾鏡
    的頭像 發(fā)表于 02-24 10:15 ?762次閱讀

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗】+兩本互為支持的書

    之極。 《計算機(jī)視覺之PyTorch數(shù)字圖像處理》為《具身智能機(jī)器人系統(tǒng)》提供了感知和識別能力,
    發(fā)表于 01-01 15:50

    AI模型部署邊緣設(shè)備的奇妙之旅:如何在邊緣端部署OpenCV

    力的研究工具。在深度學(xué)習(xí)中,我們會經(jīng)常接觸到兩個名稱,圖像處理計算機(jī)視覺,它們之間有什么區(qū)別呢
    的頭像 發(fā)表于 12-14 09:10 ?1140次閱讀
    AI模型部署邊緣設(shè)備的奇妙之旅:如何在邊緣端部署OpenCV

    自然語言處理機(jī)器學(xué)習(xí)關(guān)系 自然語言處理的基本概念及步驟

    Learning,簡稱ML)是人工智能的一個核心領(lǐng)域,它使計算機(jī)能夠從數(shù)據(jù)中學(xué)習(xí)并做出預(yù)測或決策。自然語言處理機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 12-05 15:21 ?2343次閱讀

    【小白入門必看】一文讀懂深度學(xué)習(xí)計算機(jī)視覺技術(shù)及學(xué)習(xí)路線

    ,幫我們做決定。整個過程就是為了讓機(jī)器能看懂圖像,然后根據(jù)這些圖像來做出聰明的選擇。二、計算機(jī)視覺實現(xiàn)起來難嗎?人類依賴
    的頭像 發(fā)表于 10-31 17:00 ?1591次閱讀
    【小白入門必看】一文讀懂深度<b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>計算機(jī)</b><b class='flag-5'>視覺</b>技術(shù)及<b class='flag-5'>學(xué)習(xí)</b>路線

    AI大模型在圖像識別中的優(yōu)勢

    大模型借助高性能的計算硬件和優(yōu)化的算法,能夠在短時間內(nèi)完成對大量圖像數(shù)據(jù)的處理和分析,顯著提高了圖像識別的效率。 識別準(zhǔn)確性 :通過深度
    的頭像 發(fā)表于 10-23 15:01 ?2945次閱讀