chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

SoC中的AI和神經(jīng)網(wǎng)絡(luò)解決方案

Dbwd_Imgtec ? 來源:互聯(lián)網(wǎng) ? 作者:佚名 ? 2018-05-26 10:54 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

GDPR的影響

2018年5月25日,歐盟所有成員國都將采用新的通用數(shù)據(jù)保護(hù)條例(也稱為GDPR),該條例對于個(gè)人信息的收集、管理和使用有了更嚴(yán)格的規(guī)定。新法規(guī)對于消費(fèi)者數(shù)據(jù)的整理方式、必須采用哪種方式進(jìn)行存儲和保護(hù)以及如何使用等方面具有廣泛的影響。

各種組織不能夠再收集大量關(guān)于消費(fèi)者的數(shù)據(jù)進(jìn)行多方面的分析——現(xiàn)在要求數(shù)據(jù)控制者將個(gè)人數(shù)據(jù)的處理操作最小化,并且進(jìn)行高效的限制,僅用于特定目的應(yīng)用需求。此外,該應(yīng)用必須能夠明確傳達(dá)給相關(guān)數(shù)據(jù)的個(gè)人,獲取用戶同意的要求也必須更加的明確。因此,那些我們已經(jīng)熟悉的笨拙且易混淆的條款都將不適用:處理個(gè)人用戶數(shù)據(jù)的公司必須能夠透明的解釋他們要收集哪些數(shù)據(jù)、清楚地說明為什么需要這些數(shù)據(jù)以及如何使用等。

另一個(gè)重要的考慮因素是:GDPR給予同意處理其數(shù)據(jù)的個(gè)人可以隨時(shí)撤銷授權(quán)的權(quán)利,值得注意的是,數(shù)據(jù)控制人員必須為此建議用戶這項(xiàng)權(quán)利,他們還必須能夠提供簡單的方法讓用戶能夠撤銷授權(quán),然后確保在合理的時(shí)間范圍內(nèi)刪除數(shù)據(jù),這僅僅是數(shù)據(jù)處理法規(guī)方面的根本性改變,但可能會產(chǎn)生巨大的影響。

理論上不能夠充分證明符合GDPR條例的公司將會面臨巨額罰款,因此數(shù)據(jù)隱私和保護(hù)對所有公司來說都越來越重要,這將會促使各種組織和服務(wù)提供商能夠深刻地重新考慮他們收集數(shù)據(jù)和處理的方式。

人工智能AI)介紹

考慮到不符合GPDR條例帶來的影響,企業(yè)可能不想再收集個(gè)人用戶的任何數(shù)據(jù),但是為了提供相互服務(wù),企業(yè)與消費(fèi)者之間的數(shù)據(jù)通信是必不可少的,我們可以進(jìn)行最小化處理但不可能避免。

那么人工智能(AI)如何提供幫助呢?讓我們來看一些潛在的應(yīng)用場景以及我們對引入AI如何減輕一些風(fēng)險(xiǎn)的解釋。

針對安全的行為定位

假設(shè)一個(gè)繁忙的機(jī)場,每天有成千上萬的旅客通過大廳和登機(jī)口,視頻記錄設(shè)備實(shí)時(shí)對每個(gè)現(xiàn)場進(jìn)行監(jiān)控。每個(gè)攝像機(jī)都會創(chuàng)建連續(xù)的視頻流,在進(jìn)行存檔之前這些視頻流會在安全控制室內(nèi)進(jìn)行匯總和監(jiān)控。這些視頻包括上百萬幀的數(shù)據(jù),每個(gè)數(shù)據(jù)都包含數(shù)百張人物圖片、他們的臉、活動以及通過在機(jī)場內(nèi)的軌跡,要有效監(jiān)控所有視頻數(shù)據(jù)源無疑是一項(xiàng)挑戰(zhàn),即使受過專業(yè)行為分析培訓(xùn)的專家也是如此,更重要的是,這些系統(tǒng)正在不斷創(chuàng)建和歸檔大量的視頻數(shù)據(jù),其中大部分?jǐn)?shù)據(jù)基本上都是毫無用處的。

在GDPR條例中規(guī)定攝像機(jī)與控制室之間的視頻加密傳輸是必需的,這樣才能夠保證數(shù)據(jù)在網(wǎng)絡(luò)中傳輸是安全的。事實(shí)上這種基本的安全要素已經(jīng)在使用了,但通過將AI技術(shù)引入攝像機(jī)單元我們可以進(jìn)一步改進(jìn)該系統(tǒng):在這種情況下視頻信號處理芯片集成的神經(jīng)網(wǎng)絡(luò)處理器會被設(shè)置為匿名識別每個(gè)場景中的任務(wù)和物體,除了檢測到可疑行為或者異常。舉個(gè)例子,一個(gè)用戶帶著兩件行李進(jìn)入某個(gè)區(qū)域,但是離開時(shí)只拿走一件行李,盡管他還沒有達(dá)到登機(jī)柜臺,系統(tǒng)會自動記錄視頻的相關(guān)部分。進(jìn)一步分析可以確定某個(gè)用戶,但是視頻中的其他人依然是匿名的,因此AI不僅可以顯著的減少需要處理的數(shù)據(jù)量,還可以實(shí)現(xiàn)匿名處理源數(shù)據(jù)。

AI在自動駕駛領(lǐng)域的應(yīng)用

機(jī)場的案例說明了一個(gè)潛在的AI應(yīng)用場景,在此場景中人們期望得到監(jiān)控并且監(jiān)控視頻只能認(rèn)為是機(jī)場的私有財(cái)產(chǎn)。另一個(gè)例子就是在ADAS系統(tǒng)中使用攝像頭的汽車,在這種情況下攝像機(jī)會在車輛行駛過程中不斷捕捉公路上的圖像,獲取該線路上所有用戶、司機(jī)和行人的個(gè)人信息顯然是不可能的。

在ADAS系統(tǒng)中使用神經(jīng)網(wǎng)絡(luò)技術(shù)可以幫助處理攝像機(jī)或者傳感器自身相關(guān)的數(shù)據(jù),攝像機(jī)輸出的圖像并不一定都是用戶可以識別的,相反,在圖像處理流水線中使用AI技術(shù),這可能會將原始數(shù)據(jù)轉(zhuǎn)變?yōu)閿?shù)字化視頻流。舉個(gè)例子就是道路標(biāo)志識別系統(tǒng)解析速度限制,其中標(biāo)志的數(shù)字和距離非常重要:AI攝像機(jī)輸出的數(shù)據(jù)非常的簡單,比如是“70kph in 50m”,當(dāng)然這是一個(gè)簡化的例子——實(shí)際的道路標(biāo)識系統(tǒng)要復(fù)雜的多——但是它足以說明了SoC中的AI和神經(jīng)網(wǎng)絡(luò)技術(shù)能夠顯著的減少下游環(huán)節(jié)需要處理的數(shù)據(jù)量。

片上神經(jīng)網(wǎng)絡(luò)提供了解決方案

在任何數(shù)據(jù)處理應(yīng)用中授權(quán)同意是很難展示的,尤其是大規(guī)模的個(gè)人識別數(shù)據(jù)無法避免的情況下,在芯片中集成神經(jīng)網(wǎng)絡(luò)以創(chuàng)建一個(gè)人工智能平臺,它能給我們提供獨(dú)特的解決方案。

神經(jīng)網(wǎng)絡(luò)技術(shù)的一些元素已經(jīng)集成到智能手機(jī)SoC芯片中,對一些應(yīng)用提供支持,比如人臉識別、安全支付等。同樣的,我們期望AI運(yùn)行在神經(jīng)推理引擎上,為自動駕駛帶來革命性的變化,它將使得消費(fèi)電子設(shè)備能夠與用戶自然的交談,它將成為新一代智能家居物聯(lián)網(wǎng)IoT)設(shè)備的核心,事實(shí)上我們預(yù)計(jì)人工智能(AI)將變得無處不在。

毫無疑問GDPR是批量審查數(shù)據(jù)保護(hù)和處理要求的主要催化劑之一,但是我們將這些新規(guī)定解讀為另一種影響,它將帶來電子設(shè)備收集和處理信息方式的創(chuàng)新,我們預(yù)計(jì)這種趨勢會滲透到更廣泛的應(yīng)用領(lǐng)域,甚至是一些AI“知道”而人類“不知道”的世界,這一切都是為了更好的遵循數(shù)據(jù)保護(hù)條例。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4819

    瀏覽量

    106066
  • soc
    soc
    +關(guān)注

    關(guān)注

    38

    文章

    4473

    瀏覽量

    226176
  • 人工智能
    +關(guān)注

    關(guān)注

    1811

    文章

    49497

    瀏覽量

    258194

原文標(biāo)題:當(dāng)人們不需要知道:片上AI如何有助于GDPR的合規(guī)性

文章出處:【微信號:Imgtec,微信公眾號:Imagination Tech】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真模型解決方案

    在基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真(DPD)模型,使用不同的激活函數(shù)對整個(gè)系統(tǒng)性能和能效有何影響?
    的頭像 發(fā)表于 08-29 14:01 ?2754次閱讀

    Nordic收購 Neuton.AI 關(guān)于產(chǎn)品技術(shù)的分析

    Nordic Semiconductor 于 2025 年收購了 Neuton.AI,這是一家專注于超小型機(jī)器學(xué)習(xí)(TinyML)解決方案的公司。 Neuton 開發(fā)了一種獨(dú)特的神經(jīng)網(wǎng)絡(luò)框架,能夠
    發(fā)表于 06-28 14:18

    神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)在電機(jī)故障診斷的應(yīng)用

    的診斷誤差。仿真結(jié)果驗(yàn)證了該算法的有效性。 純分享帖,需要者可點(diǎn)擊附件免費(fèi)獲取完整資料~~~*附件:神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)在電機(jī)故障診斷的應(yīng)用.pdf【免責(zé)聲明】本文系網(wǎng)絡(luò)轉(zhuǎn)載,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版
    發(fā)表于 06-16 22:09

    AI神經(jīng)網(wǎng)絡(luò)降噪算法在語音通話產(chǎn)品的應(yīng)用優(yōu)勢與前景分析

    隨著人工智能技術(shù)的快速發(fā)展,AI神經(jīng)網(wǎng)絡(luò)降噪算法在語音通話產(chǎn)品的應(yīng)用正逐步取代傳統(tǒng)降噪技術(shù),成為提升語音質(zhì)量的關(guān)鍵解決方案。相比傳統(tǒng)DSP(數(shù)字信號處理)降噪,
    的頭像 發(fā)表于 05-16 17:07 ?854次閱讀
    <b class='flag-5'>AI</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>降噪算法在語音通話產(chǎn)品<b class='flag-5'>中</b>的應(yīng)用優(yōu)勢與前景分析

    神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 的過濾器修剪統(tǒng)計(jì)數(shù)據(jù)怎么查看?

    無法觀察神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 的過濾器修剪統(tǒng)計(jì)數(shù)據(jù)
    發(fā)表于 03-06 07:10

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個(gè)神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號在神經(jīng)網(wǎng)絡(luò)是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) :
    的頭像 發(fā)表于 02-12 15:53 ?1038次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?1073次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1180次閱讀

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別的應(yīng)用

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡(luò)能夠?qū)W習(xí)到復(fù)雜的特征表達(dá),適用于處理非線性問題。以下是對BP神經(jīng)網(wǎng)絡(luò)在圖像識別應(yīng)用的分析: 一、BP
    的頭像 發(fā)表于 02-12 15:12 ?985次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?1783次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:53 ?2248次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1796次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機(jī)制

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),設(shè)計(jì)用于解決長期依賴問題,特別是在處理時(shí)間序列數(shù)據(jù)時(shí)表現(xiàn)出色。以下是LSTM神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 10:05 ?1983次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的基本原理 如何實(shí)現(xiàn)LSTM神經(jīng)網(wǎng)絡(luò)

    LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),它能夠?qū)W習(xí)長期依賴信息。在處理序列數(shù)據(jù)時(shí),如時(shí)間序列分析、自然語言處理等,LSTM因其能夠有效地捕捉時(shí)間序列的長期依賴關(guān)系而受到
    的頭像 發(fā)表于 11-13 09:53 ?2240次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    取特征的強(qiáng)大工具,例如識別音頻信號或圖像信號的復(fù)雜模式就是其應(yīng)用之一。 1、什么是卷積神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)是一種由神經(jīng)元組成的系統(tǒng)或結(jié)構(gòu),它使A
    發(fā)表于 10-24 13:56