來源:納芯微電子
在MOSFET開關(guān)中,柵極驅(qū)動器(Gate Driver)承擔(dān)著為其充電與放電的關(guān)鍵任務(wù),而這背后的能量轉(zhuǎn)換過程,直接影響驅(qū)動系統(tǒng)的效率與熱設(shè)計。傳統(tǒng)功率損耗公式雖廣泛使用,但在某些應(yīng)用場景中存在物理理解上的偏差。本文將以多個典型充放電模型為切入點,重新剖析驅(qū)動電路中能量的真實流向,并進(jìn)一步探討寄生電感對系統(tǒng)能量守恒的影響,為工程師提供更精確的能量估算依據(jù)與器件選型參考。
01常用的驅(qū)動電路功率損耗計算公式
圖1 驅(qū)動器對MOS充電
圖2 驅(qū)動器對MOS放電
對于功率損耗的計算,計算公式如下:
......(1)
......(2)
QG充電終止時,柵極總電荷
fDRV柵極驅(qū)動頻率
VDRV驅(qū)動電壓
QG*fDRV物理意義是平均充電電流
VDRV*QG*fDRV物理意義是電源供給的平均功率
PON和POFF的公式把這部分功率一分為二,一半消耗在電阻上,一半存儲在電容中,放電時電容中的能量再通過電阻消耗掉。
顯然(1)和(2)成立的條件是——充電過程中,電阻上消耗的能量等于電容上存儲的能量。但此假設(shè)一定成立嗎?很明顯電阻等于0的時候不成立。那么電阻不等于0的時候呢?
02恒壓源對MOS的充電
MOS充電波形示意如圖3,I-V曲線如圖4:
圖3
圖4
階段(1)
MOS在截止區(qū),電容:
CGATE= CGS+CGD
階段(2)
MOS在飽和區(qū),電容:
CGATE=CGS+CGD*(1+gm*RLOAD)
階段(3)
MOS在飽和區(qū),電容:
CGATE=CGD*(1+ gm*RLOAD)
階段(4)
MOS在線性電阻區(qū),電容:
CGATE=CGS+CGD
CGS和CGD可以在納芯微MOS datasheet中查到,CISS= CGS+CGD,CRSS= CGD
MOS在飽和區(qū)由于米勒效應(yīng),CGD會被放大(1+AV/V)倍,其中AV/V代表MOS飽和區(qū)的放大倍數(shù)。
CGD隨著電壓的變化而變化,對于大多數(shù)MOS,有如下近似公式:
…… (3)
階段(1)(2)(4) CISS=近似為CGS和CGD_AVG并聯(lián)。階段(3),VGS基本保持不變,CGS不起作用,驅(qū)動對CGD恒流充電。
a.如圖3區(qū)域(3)恒流充電時的功耗
…… (4)
…… (5)
當(dāng)滿足以下條件時,電阻耗能等于電容儲能。
當(dāng)VDRV>2Vmiller時,電阻耗能大于電容儲能。
電源輸出的能量
ES=VDRV*IG*t=CGD*VDRV*VDS_off=ER+EC
…… (6)
b.如圖3區(qū)域(1)(2)(4)合成一段,RC充電階段
令CG=CGS+CGD_AVC;充電終止CG電壓Uo=k*UDRV;充電持續(xù)時間為T;充電電流為IG
…… (7)
…… (8)
電容儲能總小于電阻功耗,電容越接近充滿,兩者越接近相等。
電源輸出能量
…… (9)
03電容對MOS的充電
實際電路中,驅(qū)動芯片給MOS充電時,充電電流大部分都是由電容提供,因此可以近似認(rèn)為驅(qū)動電路是電容給電容充電的模型。
a.如圖3區(qū)域(3)恒流充電時的功耗
電阻耗能
電容儲能
電源電容輸出的能量
對比恒壓源對電容充電公式,VDRV變?yōu)閂DRV_AVC,因為電源電容電壓在下跌,因此取充電過程的平均值。
b.如圖3區(qū)域(1)(2)(4)合成一段,RC充電階段
設(shè)電源電容CIN初始電壓為UDRV,實時電壓為UIN;門極電容CG=CGS+CGD_AVG;充電終止CG電壓Uo=k*UDRV;充電持續(xù)時間為T; 充電電流為IG。如圖5,根據(jù)s域模型求解電壓和電流:
圖5
令
求拉普拉斯逆變換
電容儲能
…… (10)
電阻耗能
…… (11)
電源電容輸出的能量
…… (12)
當(dāng)
時,
電容儲能大于電阻耗能。
當(dāng)
時,
電阻耗能大于電容儲能。
…… (13)
令
…… (14)
設(shè)充電終止時,兩個電容電壓相等,根據(jù)電荷守恒:
,解得
代入式(14)
…… (15)
由式(15)可知,電源電容輸出的能量大于電阻耗能+電容儲能。
即CG=CIN時,分母達(dá)到最小值,電容值相差越大,損失能量越小。
04MOS的放電
設(shè)電容初始電壓UG,終止電壓Uo=kUG,放電持續(xù)時間為T
電容剩余儲能
電阻耗能
電容初始儲能
因此放電過程中,電容釋放的能量完全消耗在電阻上。
05寄生電感的作用
充電回路相當(dāng)于一匝的線圈,形成寄生電感,圖6的模型更接近實際電路。
圖6
在如圖3區(qū)域(3),近似恒流充電,電感的作用忽略,因此不作分析。
設(shè)電源電容CIN初始電壓為UDRV,時刻電壓為UIN;門極電容:CG=CGS+CGD_AVG;充電終止CG電壓Uo=k*UDRV;充電持續(xù)時間為T;充電電流為IG;計生電感L。
由于IG和Uo的時域公式非常復(fù)雜,T的表達(dá)式無法求出,也無法通過公式計算電阻的耗能。因為電阻的影響只是消耗一部分能量,把這部分能量降為0,也就是令電阻等于0,電路中只有L和C,以簡化分析。
求拉普拉斯逆變換:
任意時刻電感儲能
…… (16)
任意時刻MOS電容儲能
…… (17)
任意時刻電源電容儲能
…… (18)
初始時刻電源電容儲能
…… (19)
由式 (19)可知電能守恒,沒有額外的能量損失。當(dāng)然,交變的電磁場,還是會輻射能量,但因為電感的存在,抑制了電流的變化率。
結(jié)論與建議
通過對不同充電模型下電阻損耗、電容儲能、電源能量輸出之間關(guān)系的定量分析,本文指出傳統(tǒng)“電源能量一分為二”的假設(shè)并非總是成立。特別是在驅(qū)動電壓高于2倍米勒電平時,柵極電阻的能量損耗常常大于電容儲能;而在電容對電容充電的模型中,能量分布又呈現(xiàn)出不同特性。此外,MOS關(guān)斷時所有儲能都通過電阻耗散,而寄生電感則在一定程度上抑制了能量損失。理解這些能量路徑對精確設(shè)計高效Gate Driver系統(tǒng)至關(guān)重要,尤其在追求高頻、高密度、高可靠性的電源應(yīng)用中更顯價值。
納芯微電子(簡稱納芯微,科創(chuàng)板股票代碼688052)是高性能高可靠性模擬及混合信號芯片公司。自2013年成立以來,公司聚焦傳感器、信號鏈、電源管理三大方向,為汽車、工業(yè)、信息通訊及消費電子等領(lǐng)域提供豐富的半導(dǎo)體產(chǎn)品及解決方案。
納芯微以『“感知”“驅(qū)動”未來,共建綠色、智能、互聯(lián)互通的“芯”世界』為使命,致力于為數(shù)字世界和現(xiàn)實世界的連接提供芯片級解決方案。
-
MOSFET
+關(guān)注
關(guān)注
150文章
9103瀏覽量
225930 -
驅(qū)動電路
+關(guān)注
關(guān)注
158文章
1596瀏覽量
110835 -
寄生電感
+關(guān)注
關(guān)注
1文章
163瀏覽量
15005 -
柵極驅(qū)動器
+關(guān)注
關(guān)注
8文章
1241瀏覽量
40053
原文標(biāo)題:Gate Driver功耗去哪兒了?一文讀懂MOS柵極充放電中的能量真相
文章出處:【微信號:米芯微電子,微信公眾號:米芯微電子】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄

隔離式柵極驅(qū)動器揭秘
隔離式柵極驅(qū)動器的揭秘
柵極驅(qū)動器是什么
柵極驅(qū)動器是什么,為何需要柵極驅(qū)動器?
用于SiC MOSFET的柵極驅(qū)動器

MOSFET和IGBT柵極驅(qū)動器電路學(xué)習(xí)筆記之柵極驅(qū)動參考

用于電機(jī)驅(qū)動的MOSFET驅(qū)動器

評論