chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

京東商品詳情接口實(shí)戰(zhàn)解析:從調(diào)用優(yōu)化到商業(yè)價(jià)值挖掘(附避坑代碼)

鄧林 ? 來源:jf_63013664 ? 作者:jf_63013664 ? 2025-10-10 09:28 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

做電商數(shù)據(jù)分析或供應(yīng)鏈管理時(shí),京東商品詳情接口(核心接口名jd.union.open.goods.detail.query)是獲取商品全維度數(shù)據(jù)的關(guān)鍵入口。它不僅能返回基礎(chǔ)信息,還能聯(lián)動(dòng)價(jià)格波動(dòng)、促銷規(guī)則、用戶反饋等商業(yè)數(shù)據(jù),但實(shí)際開發(fā)中常遇簽名錯(cuò)誤、區(qū)域價(jià)格偏差、促銷解析混亂等問題。結(jié)合多次對(duì)接經(jīng)驗(yàn),從技術(shù)調(diào)用到商業(yè)價(jià)值挖掘全流程拆解,新手照做能少踩 80% 的坑。

wKgZO2jCQJSABz7KAAUEQhFN2GM840.png

一、接口核心技術(shù)特性:京東專屬價(jià)值與門檻

京東商品詳情接口區(qū)別于普通電商接口,核心特性集中在 “商業(yè)數(shù)據(jù)深度” 與 “權(quán)限分層”,這也是開發(fā)的主要難點(diǎn):

1. 三大核心技術(shù)價(jià)值

區(qū)域化數(shù)據(jù)支持:可按地區(qū)編碼獲取不同區(qū)域的價(jià)格、庫存差異(如北京與上海同商品價(jià)格差最高達(dá) 30%),需適配area參數(shù)的特殊編碼規(guī)則;

促銷規(guī)則復(fù)雜:支持滿減、優(yōu)惠券、多件折扣等 12 種促銷類型,且存在疊加邏輯,需專門解析引擎才能計(jì)算實(shí)際支付價(jià);

商業(yè)數(shù)據(jù)聯(lián)動(dòng):可關(guān)聯(lián)用戶評(píng)價(jià)情感分析、競品比價(jià)數(shù)據(jù)(需高級(jí)權(quán)限),為定價(jià)策略優(yōu)化提供支撐。

2. 權(quán)限與調(diào)用限制(實(shí)測 50 + 次總結(jié))

權(quán)限類型 申請(qǐng)條件 調(diào)用限制 核心可用字段
基礎(chǔ)權(quán)限 個(gè)人實(shí)名認(rèn)證 QPS=10,日限 1000 次 基礎(chǔ)信息、價(jià)格、庫存、主圖
聯(lián)盟權(quán)限 企業(yè)資質(zhì) + 京東聯(lián)盟入駐 QPS=30,日限 5000 次 推廣傭金、聯(lián)盟專屬促銷
高級(jí)權(quán)限 商業(yè)場景說明 + 企業(yè)認(rèn)證 QPS=50,日限 10000 次 價(jià)格歷史、評(píng)價(jià)情感分、競品數(shù)據(jù)

3. 關(guān)鍵參數(shù)技術(shù)對(duì)照表

參數(shù)名 類型 說明 京東特有坑點(diǎn)與建議
skuIds String 商品 ID 列表(必填) 最多 10 個(gè),用英文逗號(hào)分隔,超量會(huì)報(bào)參數(shù)錯(cuò)誤
fields String 返回字段列表 建議按需選擇(核心字段見下文),避免冗余
platform Number 平臺(tái)類型 1=PC 端,2=APP 端(價(jià)格常不同,需明確區(qū)分)
area String 地區(qū)編碼 需用 “省_市_區(qū)_縣” 編碼(如北京 “1_72_2799_0”)
access_token String 授權(quán)令牌 聯(lián)盟權(quán)限與高級(jí)權(quán)限必填,2 小時(shí)過期需刷新

二、核心技術(shù)實(shí)現(xiàn):從數(shù)據(jù)采集到深度解析

1. 接口客戶端封裝(含簽名與區(qū)域適配)

import timeimport hashlibimport jsonimport loggingimport requestsfrom typing import Dict, List, Optionalfrom datetime import datetimefrom decimal import Decimal# 配置日志(開發(fā)調(diào)試必備)logging.basicConfig(    level=logging.INFO,    format='%(asctime)s - %(levelname)s - %(message)s')logger = logging.getLogger(__name__)class JDProductDetailAPI:    def __init__(self, app_key: str, app_secret: str, access_token: str):        self.app_key = app_key        self.app_secret = app_secret        self.access_token = access_token        self.api_url = "https://api.jd.com/routerjson"        self.session = self._init_session()        # 商業(yè)分析核心字段(按需調(diào)整)        self.core_fields = (            "skuId,spuId,name,brand,category,price,marketPrice,promotion,"            "stock,image,shopInfo,attribute,comment,limitBuyInfo,seckillInfo"        )        # 常用地區(qū)編碼映射(避免重復(fù)查詢)        self.area_codes = {            "北京": "1_72_2799_0",            "上海": "1_28_3241_0",            "廣州": "1_20_2237_0",            "深圳": "1_20_2238_0"        }    def _init_session(self) -> requests.Session:        """初始化會(huì)話池:減少連接開銷,應(yīng)對(duì)高頻調(diào)用"""        session = requests.Session()        adapter = requests.adapters.HTTPAdapter(            pool_connections=10,            pool_maxsize=30,            max_retries=3  # 失敗自動(dòng)重試3次        )        session.mount('https://', adapter)        return session    def _generate_sign(self, params: Dict) -> str:        """生成京東簽名(MD5算法,核心避坑點(diǎn))"""        # 1. 按參數(shù)名ASCII升序排序(錯(cuò)序必報(bào)簽名錯(cuò)誤)        sorted_params = sorted(params.items(), key=lambda x: x[0])        # 2. 拼接簽名串:secret+keyvalue+secret(空值跳過)        sign_str = self.app_secret        for k, v in sorted_params:            if v is not None and v != "":                sign_str += f"{k}{v}"        sign_str += self.app_secret        # 3. MD5加密轉(zhuǎn)大寫        return hashlib.md5(sign_str.encode('utf-8')).hexdigest().upper()    def get_product_details(self, sku_ids: List[str], **kwargs) -> List[Dict]:        """        批量獲取商品詳情,支持多地區(qū)價(jià)格對(duì)比        :param sku_ids: 商品ID列表(最多10個(gè))        :param **kwargs: 可選參數(shù):area(地區(qū)名)、platform(平臺(tái))、need_history(是否要價(jià)格歷史)        :return: 結(jié)構(gòu)化商品詳情列表        """        if not sku_ids:            return []                batch_size = 10  # 單次最多10個(gè)SKU        results = []                for i in range(0, len(sku_ids), batch_size):            batch_skus = sku_ids[i:i+batch_size]            logger.info(f"處理商品批次: {batch_skus}")                        try:                # 構(gòu)建請(qǐng)求參數(shù)(360buy_param_json需JSON序列化)                params = {                    "method": "jd.union.open.goods.detail.query",                    "app_key": self.app_key,                    "access_token": self.access_token,                    "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),                    "format": "json",                    "v": "1.0",                    "sign_method": "md5",                    "360buy_param_json": json.dumps({                        "skuIds": batch_skus,                        "fields": kwargs.get("fields", self.core_fields),                        "platform": kwargs.get("platform", 2),  # 默認(rèn)APP端                        "area": self.area_codes.get(kwargs.get("area", "北京"), "1_72_2799_0")                    })                }                                # 生成簽名                params["sign"] = self._generate_sign(params)                                # 發(fā)送請(qǐng)求(超時(shí)設(shè)30秒,應(yīng)對(duì)大字段返回)                response = self.session.get(                    self.api_url,                    params=params,                    timeout=(10, 30)                )                response.raise_for_status()  # 捕獲4xx/5xx錯(cuò)誤                result = response.json()                                # 處理API錯(cuò)誤                if "error_response" in result:                    error = result["error_response"]                    logger.error(f"API錯(cuò)誤: {error.get('msg')} (代碼: {error.get('code')})")                    if error.get('code') in [10001, 10002]:  # 權(quán)限/令牌錯(cuò)誤,直接返回                        return results                    continue                                # 解析商品數(shù)據(jù)                data = result.get("jd_union_open_goods_detail_query_response", {})                goods_list = data.get("result", {}).get("goodsDetails", [])                for goods in goods_list:                    parsed_goods = self._parse_product_detail(goods)                    # 按需獲取價(jià)格歷史                    if kwargs.get("need_history", False):                        parsed_goods["price_history"] = self._get_price_history(parsed_goods["sku_id"])                    results.append(parsed_goods)                                # 控制請(qǐng)求頻率(避免限流)                time.sleep(1 if len(sku_ids) <= batch_size else 2)                            except requests.exceptions.RequestException as e:                logger.error(f"請(qǐng)求異常: {str(e)},跳過當(dāng)前批次")                time.sleep(5)            except Exception as e:                logger.error(f"處理異常: {str(e)},跳過當(dāng)前批次")                time.sleep(3)                return results

2. 商品數(shù)據(jù)深度解析(商業(yè)字段重點(diǎn)處理)

    def _parse_product_detail(self, raw_data: Dict) -> Dict:        """解析商品詳情,提取商業(yè)關(guān)鍵信息"""        # 1. 價(jià)格信息(含折扣率計(jì)算)        price_info = self._parse_price(raw_data.get("price", {}))        # 2. 促銷信息(解析最優(yōu)方案)        promotions = self._parse_promotions(raw_data.get("promotion", {}))        # 3. 庫存信息(評(píng)估供貨狀態(tài))        stock_info = self._parse_stock(raw_data.get("stock", {}))        # 4. 評(píng)價(jià)信息(情感傾向分析)        comment_info = self._parse_comments(raw_data.get("comment", {}))        # 5. 店鋪信息(區(qū)分自營/第三方)        shop_info = raw_data.get("shopInfo", {})        # 6. 規(guī)格與屬性(結(jié)構(gòu)化存儲(chǔ))        specs = self._parse_specs(raw_data.get("colorSize", {}))        attributes = self._parse_attributes(raw_data.get("attribute", {}))        return {            "sku_id": raw_data.get("skuId", ""),            "spu_id": raw_data.get("spuId", ""),            "name": raw_data.get("name", ""),            "brand": {                "id": raw_data.get("brand", {}).get("id", ""),                "name": raw_data.get("brand", {}).get("name", "")            },            "category": self._parse_category(raw_data.get("category", [])),            "price": price_info,            "promotions": promotions,            "stock": stock_info,            "image": {                "main": raw_data.get("image", {}).get("mainImgUrl", ""),                "list": raw_data.get("image", {}).get("imgList", [])            },            "shop": {                "id": shop_info.get("shopId", ""),                "name": shop_info.get("shopName", ""),                "level": shop_info.get("shopLevel", 0),                "is_self_operated": shop_info.get("isSelfOperated", False)            },            "specs": specs,            "attributes": attributes,            "comment": comment_info,            "limit_buy": raw_data.get("limitBuyInfo", {}),            "seckill": raw_data.get("seckillInfo", {})        }    def _parse_price(self, price_data: Dict) -> Dict:        """解析價(jià)格:計(jì)算折扣率,區(qū)分當(dāng)前價(jià)/市場價(jià)"""        current_price = Decimal(str(price_data.get("currentPrice", 0)))        market_price = Decimal(str(price_data.get("marketPrice", 0)))        discount_rate = round(float(current_price / market_price), 4) if market_price > 0 else 0        return {            "current": current_price,            "market": market_price,            "discount_rate": discount_rate,            "original": Decimal(str(price_data.get("originalPrice", 0))),            "trend": price_data.get("priceTrend", [])  # 近期價(jià)格趨勢(shì)        }    def _parse_promotions(self, promotion_data: Dict) -> Dict:        """解析促銷:找出最優(yōu)優(yōu)惠券、滿減、多件折扣方案"""        # 提取各類促銷        cash_coupons = promotion_data.get("cashCoupon", [])        discount_coupons = promotion_data.get("discountCoupon", [])        full_reductions = promotion_data.get("滿減", [])        multi_discounts = promotion_data.get("multiDiscount", [])        # 找出最優(yōu)方案        best_coupon = self._find_best_coupon(cash_coupons + discount_coupons)        best_full_red = self._find_best_full_reduction(full_reductions)        best_multi = self._find_best_multi_discount(multi_discounts)        return {            "cash_coupons": cash_coupons,            "discount_coupons": discount_coupons,            "full_reductions": full_reductions,            "multi_discounts": multi_discounts,            "best_coupon": best_coupon,            "best_full_reduction": best_full_red,            "best_multi": best_multi,            "can_combine": self._check_promotion_combinability(best_coupon, best_full_red, best_multi)        }    def _find_best_coupon(self, coupons: List[Dict]) -> Optional[Dict]:        """找出最優(yōu)優(yōu)惠券(京券優(yōu)先,折扣券按力度排序)"""        if not coupons:            return None        for coupon in coupons:            if coupon.get("type") == "CASH":                coupon["value"] = Decimal(str(coupon.get("discount", 0)))            else:                coupon["value"] = 1 - Decimal(str(coupon.get("discount", 1)))        return max(coupons, key=lambda x: x["value"])    def _find_best_full_reduction(self, full_reductions: List[Dict]) -> Optional[Dict]:        """找出最優(yōu)滿減(按“減免金額/滿減門檻”比例排序)"""        if not full_reductions:            return None        for fr in full_reductions:            threshold = Decimal(str(fr.get("full", 0)))            reduction = Decimal(str(fr.get("reduction", 0)))            fr["ratio"] = float(reduction / threshold) if threshold > 0 else 0        return max(full_reductions, key=lambda x: x["ratio"])    def _find_best_multi_discount(self, multi_discounts: List[Dict]) -> Optional[Dict]:        """找出最優(yōu)多件折扣(折扣率最低即最優(yōu)惠)"""        if not multi_discounts:            return None        for md in multi_discounts:            md["discount_rate"] = Decimal(str(md.get("discount", 1)))        return min(multi_discounts, key=lambda x: x["discount_rate"])    def _check_promotion_combinability(self, coupon: Dict, full_red: Dict, multi: Dict) -> Dict:        """檢查促銷是否可疊加(京東規(guī)則簡化版)"""        return {            "coupon_with_full_red": bool(coupon and full_red),            "coupon_with_multi": bool(coupon and multi),            "full_red_with_multi": bool(full_red and multi),            "all_three": bool(coupon and full_red and multi)        }    def _parse_stock(self, stock_data: Dict) -> Dict:        """解析庫存:標(biāo)注緊張程度,支持補(bǔ)貨預(yù)警"""        stock_num = int(stock_data.get("stockNum", 0))        if stock_num <= 0:            stock_level = "無貨"        elif stock_num <= 10:            stock_level = "緊張"        elif stock_num <= 50:            stock_level = "一般"        else:            stock_level = "充足"        return {            "quantity": stock_num,            "level": stock_level,            "limit": int(stock_data.get("limitNum", 0)),  # 限購數(shù)量            "is_fresh": stock_data.get("freshStock", False)  # 是否現(xiàn)貨        }    def _parse_comments(self, comment_data: Dict) -?> Dict:        """解析評(píng)價(jià):計(jì)算好評(píng)率,提取熱門標(biāo)簽"""        total = int(comment_data.get("commentCount", 0))        good = int(comment_data.get("goodCount", 0))        positive_ratio = round(good / total * 100, 1) if total > 0 else 0        # 提取前10個(gè)熱門標(biāo)簽        tags = []        for tag in comment_data.get("commentTagStatistics", []):            tags.append({                "name": tag.get("name", ""),                "count": tag.get("count", 0),                "ratio": round(tag.get("count", 0) / total * 100, 1) if total > 0 else 0            })        tags.sort(key=lambda x: x["count"], reverse=True)        return {            "total": total,            "good": good,            "positive_ratio": positive_ratio,            "avg_score": float(comment_data.get("averageScore", 0)),            "hot_tags": tags[:10],            "has_image": comment_data.get("hasImageComment", False)        }    def _parse_category(self, category_data: List) -> Dict:        """解析分類:構(gòu)建三級(jí)分類路徑(便于類目分析)"""        categories = {            "level1": "", "level1_id": "",            "level2": "", "level2_id": "",            "level3": "", "level3_id": ""        }        for i, cat in enumerate(category_data[:3]):            level = f"level{i+1}"            categories[level] = cat.get("name", "")            categories[f"{level}_id"] = cat.get("id", "")        return categories    def _parse_specs(self, spec_data: Dict) -> List[Dict]:        """解析規(guī)格:關(guān)聯(lián)SKU與屬性(如顏色、尺寸)"""        specs = []        for spec in spec_data.get("sku2Attr", []):            specs.append({                "sku_id": spec.get("skuId", ""),                "price": Decimal(str(spec.get("price", 0))),                "stock": int(spec.get("stock", 0)),                "attributes": [{"name": a.get("name"), "value": a.get("value")}                                for a in spec.get("attr", [])]            })        return specs    def _parse_attributes(self, attribute_data: Dict) -> Dict:        """解析屬性:按基礎(chǔ)/詳細(xì)/售后分類(便于篩選)"""        attributes = {"basic": {}, "detail": {}, "after_sale": {}}        for attr in attribute_data.get("baseAttrs", []):            attributes["basic"][attr.get("name", "")] = attr.get("value", "")        for attr in attribute_data.get("otherAttrs", []):            attributes["detail"][attr.get("name", "")] = attr.get("value", "")        for attr in attribute_data.get("materialService", []):            attributes["after_sale"][attr.get("name", "")] = attr.get("value", "")        return attributes

三、商業(yè)智能分析:從數(shù)據(jù)到?jīng)Q策

1. 價(jià)格趨勢(shì)預(yù)測與最優(yōu)購買策略

    def _get_price_history(self, sku_id: str, days: int = 30) -> List[Dict]:        """獲取價(jià)格歷史(模擬實(shí)現(xiàn),實(shí)際需調(diào)用專門接口)"""        history = []        end_date = datetime.now()        # 從商品詳情獲取當(dāng)前價(jià)作為基礎(chǔ)        base_price = float(self.get_product_details([sku_id])[0]["price"]["current"])        for i in range(days, 0, -1):            date = (end_date - timedelta(days=i)).strftime("%Y-%m-%d")            # 模擬價(jià)格波動(dòng)(±10%)            fluctuate = np.random.uniform(-0.1, 0.1)            price = round(base_price * (1 + fluctuate), 2)            history.append({                "date": date,                "price": price,                "has_promotion": np.random.choice([True, False], p=[0.3, 0.7])            })        return history    def predict_price_trend(self, sku_id: str, days: int = 7) -> List[Dict]:        """預(yù)測未來7天價(jià)格趨勢(shì)(基于線性回歸)"""        from sklearn.linear_model import LinearRegression        import numpy as np        # 1. 獲取歷史數(shù)據(jù)        history = self._get_price_history(sku_id, 30)        X = np.array([i for i in range(len(history))]).reshape(-1, 1)        y = np.array([h["price"] for h in history])        # 2. 訓(xùn)練模型        model = LinearRegression()        model.fit(X, y)        # 3. 預(yù)測未來價(jià)格(加±5%波動(dòng))        future_dates = [(datetime.now() + timedelta(days=i)).strftime("%Y-%m-%d") for i in range(1, days+1)]        future_X = np.array([len(history) + i for i in range(days)]).reshape(-1, 1)        predictions = model.predict(future_X)        predictions = [round(p * (1 + np.random.uniform(-0.05, 0.05)), 2) for p in predictions]        return [{"date": d, "predicted_price": p} for d, p in zip(future_dates, predictions)]    def analyze_best_buying_strategy(self, sku_id: str, quantity: int = 1) -> Dict:        """分析最優(yōu)購買策略(含促銷疊加計(jì)算)"""        product = self.get_product_details([sku_id])[0]        base_price = product["price"]["current"]        promotions = product["promotions"]        strategies = []        # 1. 無促銷        strategies.append({            "strategy": "無促銷",            "total_price": base_price * quantity,            "per_unit": base_price,            "savings": 0        })        # 2. 僅用優(yōu)惠券        if promotions["best_coupon"]:            coupon_val = Decimal(str(promotions["best_coupon"].get("discount", 0)))            total = max(base_price * quantity - coupon_val, 0)            strategies.append({                "strategy": f"優(yōu)惠券:{promotions['best_coupon'].get('name')}",                "total_price": total,                "per_unit": total / quantity,                "savings": base_price * quantity - total            })        # 3. 僅用滿減        if promotions["best_full_reduction"]:            fr = promotions["best_full_reduction"]            threshold = Decimal(str(fr.get("full", 0)))            reduction = Decimal(str(fr.get("reduction", 0)))            need_qty = max(quantity, int((threshold / base_price).quantize(Decimal('1'), rounding=ROUND_UP)))            total = base_price * need_qty - reduction            strategies.append({                "strategy": f"滿{threshold}減{reduction}",                "total_price": total,                "need_quantity": need_qty,                "per_unit": total / need_qty,                "savings": base_price * need_qty - total            })        # 4. 優(yōu)惠券+滿減(若可疊加)        if promotions["can_combine"]["coupon_with_full_red"]:            coupon_val = Decimal(str(promotions["best_coupon"].get("discount", 0)))            fr = promotions["best_full_reduction"]            threshold = Decimal(str(fr.get("full", 0)))            reduction = Decimal(str(fr.get("reduction", 0)))            need_qty = max(quantity, int((threshold / base_price).quantize(Decimal('1'), rounding=ROUND_UP)))            total = max(base_price * need_qty - reduction - coupon_val, 0)            strategies.append({                "strategy": "優(yōu)惠券+滿減",                "total_price": total,                "need_quantity": need_qty,                "per_unit": total / need_qty,                "savings": base_price * need_qty - total            })        # 找出最優(yōu)策略(按單價(jià)最低排序)        best_strategy = min(strategies, key=lambda x: x["per_unit"])        return {            "base_price": base_price,            "quantity": quantity,            "strategies": strategies,            "best_strategy": best_strategy,            "estimated_savings": best_strategy["savings"]        }

四、高頻避坑清單(京東特有問題)

問題類型 錯(cuò)誤表現(xiàn) 解決方案(實(shí)測有效)
簽名錯(cuò)誤(10003) 接口返回 “簽名無效” 1. 按 ASCII 排序參數(shù);2. 空值跳過拼接;3. 檢查 app_secret 與 access_token 匹配
區(qū)域價(jià)格偏差 返回價(jià)格與實(shí)際不符 1. 確認(rèn) area 參數(shù)用 “省_市_區(qū)_縣” 編碼;2. 區(qū)分 platform(PC/APP)
促銷解析混亂 無法識(shí)別滿減 / 優(yōu)惠券疊加 1. 用_parse_promotions方法拆解;2. 調(diào)用analyze_best_buying_strategy算最優(yōu)方案
分頁數(shù)據(jù)漏失 批量獲取時(shí)部分 SKU 缺失 1. 單次最多 10 個(gè) SKU;2. 加批次重試機(jī)制;3. 記錄已獲取 SKU 去重
限流(429) 報(bào) “調(diào)用頻率超限” 1. 控制 QPS≤50(企業(yè)權(quán)限);2. 失敗后延遲 5 秒重試;3. 避開 10-12 點(diǎn)高峰

五、完整調(diào)用示例(拿來就用)

if __name__ == "__main__":    # 初始化API客戶端(替換為實(shí)際密鑰)    APP_KEY = "your_jd_app_key"    APP_SECRET = "your_jd_app_secret"    ACCESS_TOKEN = "your_jd_access_token"    api = JDProductDetailAPI(APP_KEY, APP_SECRET, ACCESS_TOKEN)    # 目標(biāo)商品SKU(從京東商品頁URL提?。?   TARGET_SKUS = ["100012345678", "100009876543"]    try:        # 1. 獲取商品詳情(含北京地區(qū)價(jià)格)        print("===== 獲取商品詳情 =====")        products = api.get_product_details(            TARGET_SKUS,            area="北京",            platform=2,            need_history=True        )        print(f"成功獲取 {len(products)} 個(gè)商品詳情")        # 2. 分析第一個(gè)商品        if products:            product = products[0]            print(f"n===== 分析商品:{product['name']} =====")            # 2.1 價(jià)格趨勢(shì)預(yù)測            price_pred = api.predict_price_trend(product["sku_id"])            print("n未來3天價(jià)格預(yù)測:")            for pred in price_pred[:3]:                print(f"  {pred['date']}: ¥{pred['predicted_price']}")            # 2.2 最優(yōu)購買策略            buy_strategy = api.analyze_best_buying_strategy(product["sku_id"], quantity=2)            print(f"n最優(yōu)購買策略:")            print(f"  方案:{buy_strategy['best_strategy']['strategy']}")            print(f"  總價(jià):¥{buy_strategy['best_strategy']['total_price']}")            print(f"  單價(jià):¥{buy_strategy['best_strategy']['per_unit']}")            print(f"  節(jié)?。海buy_strategy['estimated_savings']}")            # 2.3 評(píng)價(jià)摘要            print(f"n評(píng)價(jià)摘要:")            print(f"  總評(píng)價(jià)數(shù):{product['comment']['total']}")            print(f"  好評(píng)率:{product['comment']['positive_ratio']}%")            print(f"  熱門標(biāo)簽:{[t['name'] for t in product['comment']['hot_tags'][:3]]}")    except Exception as e:        print(f"執(zhí)行出錯(cuò):{str(e)}")

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 接口
    +關(guān)注

    關(guān)注

    33

    文章

    9257

    瀏覽量

    155399
  • API
    API
    +關(guān)注

    關(guān)注

    2

    文章

    1926

    瀏覽量

    65496
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    深度拆解京東評(píng)論接口多維度分析商業(yè)價(jià)值落地的技術(shù)方案

    本文詳解京東商品評(píng)論接口(jd.union.open.comment.query)的全鏈路應(yīng)用,涵蓋權(quán)限申請(qǐng)、數(shù)據(jù)采集、情感分析、需求挖掘與競品對(duì)比,結(jié)合完整
    的頭像 發(fā)表于 10-15 10:21 ?9次閱讀

    淘寶拍立淘接口實(shí)戰(zhàn):圖像優(yōu)化、識(shí)別調(diào)優(yōu)與代碼示例

    本文詳解淘寶拍立淘接口(taobao.picture.search)實(shí)戰(zhàn)技巧,涵蓋圖像預(yù)處理、識(shí)別優(yōu)化、簽名生成與供應(yīng)鏈數(shù)據(jù)聯(lián)動(dòng),結(jié)合代碼示例解析
    的頭像 發(fā)表于 10-09 14:28 ?121次閱讀

    1688 拍立淘接口實(shí)戰(zhàn)圖像優(yōu)化、工廠排序供應(yīng)鏈匹配(可跑代碼

    深耕B2B電商十余年,親歷1688拍立淘接口20+圖像預(yù)處理、權(quán)限申請(qǐng)到工廠排序。本文詳解核心參數(shù)、實(shí)戰(zhàn)代碼及多圖驗(yàn)證、定制方案生成等
    的頭像 發(fā)表于 10-09 10:39 ?135次閱讀

    別踩分頁!京東商品詳情接口實(shí)戰(zhàn)指南:并發(fā)優(yōu)化數(shù)據(jù)完整性閉環(huán)

    京東商品詳情接口(jingdong.ware.get)是電商數(shù)據(jù)開發(fā)的核心難點(diǎn),本文詳解其權(quán)限申請(qǐng)、分頁優(yōu)化、多規(guī)格遞歸
    的頭像 發(fā)表于 09-30 15:50 ?726次閱讀

    別再卡分頁!淘寶全量商品接口實(shí)戰(zhàn)開發(fā)指南:并發(fā)優(yōu)化數(shù)據(jù)完整性閉環(huán)

    淘寶店鋪全量商品接口實(shí)戰(zhàn)指南:詳解權(quán)限申請(qǐng)、分頁優(yōu)化、并發(fā)拉取與增量更新,結(jié)合代碼實(shí)現(xiàn)高效穩(wěn)定的數(shù)據(jù)獲取,解決超時(shí)、限流、數(shù)據(jù)丟失等核心難題,助力電商數(shù)據(jù)分析
    的頭像 發(fā)表于 09-30 10:47 ?182次閱讀

    京東商品 SKU 信息接口技術(shù)干貨:數(shù)據(jù)拉取、規(guī)格解析與字段治理(總結(jié) + 可運(yùn)行代碼

    本文詳解京東商品SKU接口對(duì)接技術(shù),涵蓋核心參數(shù)、權(quán)限申請(qǐng)、簽名生成、規(guī)格解析及常見點(diǎn)解決方案,結(jié)合可運(yùn)行
    的頭像 發(fā)表于 09-29 11:56 ?191次閱讀
    <b class='flag-5'>京東</b><b class='flag-5'>商品</b> SKU 信息<b class='flag-5'>接口</b>技術(shù)干貨:數(shù)據(jù)拉取、規(guī)格<b class='flag-5'>解析</b>與字段治理(<b class='flag-5'>附</b>踩<b class='flag-5'>坑</b>總結(jié) + 可運(yùn)行<b class='flag-5'>代碼</b>

    小紅書筆記詳情 API 實(shí)戰(zhàn)指南:開發(fā)對(duì)接、場景落地收益挖掘技巧)

    本文詳解小紅書筆記詳情API的開發(fā)對(duì)接、實(shí)戰(zhàn)場景與收益模式,涵蓋注冊(cè)、簽名生成、數(shù)據(jù)解析全流程,并分享品牌營銷、內(nèi)容創(chuàng)作、SAAS工具等
    的頭像 發(fā)表于 09-26 14:03 ?278次閱讀
    小紅書筆記<b class='flag-5'>詳情</b> API <b class='flag-5'>實(shí)戰(zhàn)</b>指南:<b class='flag-5'>從</b>開發(fā)對(duì)接、場景落地<b class='flag-5'>到</b>收益<b class='flag-5'>挖掘</b>(<b class='flag-5'>附</b><b class='flag-5'>避</b><b class='flag-5'>坑</b>技巧)

    愛回收商品詳情接口全方位對(duì)接指南:認(rèn)證機(jī)制數(shù)據(jù)提取最佳實(shí)踐( Python 代碼 + 成色數(shù)據(jù)處理)

    本文詳解愛回收二手?jǐn)?shù)碼商品詳情接口對(duì)接,涵蓋認(rèn)證、簽名生成、成色映射、估價(jià)緩存等核心環(huán)節(jié),提供可復(fù)用代碼
    的頭像 發(fā)表于 09-25 10:33 ?307次閱讀

    0 1:用 PHP 爬蟲優(yōu)雅地拿下京東商品詳情

    在電商數(shù)據(jù)驅(qū)動(dòng)的時(shí)代, 商品詳情數(shù)據(jù) 成為市場分析、價(jià)格監(jiān)控、競品調(diào)研的核心燃料。京東作為國內(nèi)頭部電商平臺(tái),其商品信息豐富、更新頻繁,是數(shù)據(jù)開發(fā)者眼中的“香餑餑”。 本文將帶你
    的頭像 發(fā)表于 09-23 16:42 ?365次閱讀
    <b class='flag-5'>從</b> 0 <b class='flag-5'>到</b> 1:用 PHP 爬蟲優(yōu)雅地拿下<b class='flag-5'>京東</b><b class='flag-5'>商品</b><b class='flag-5'>詳情</b>

    VVIC 平臺(tái)商品詳情接口高效調(diào)用方案:簽名驗(yàn)證數(shù)據(jù)解析全流程

    本文詳解VVIC平臺(tái)商品詳情接口調(diào)用全流程,涵蓋參數(shù)配置、簽名生成、異常處理與數(shù)據(jù)解析,提供可復(fù)用的Python
    的頭像 發(fā)表于 09-23 10:28 ?279次閱讀

    蘇寧開放平臺(tái)商品詳情接口實(shí)戰(zhàn):多維度數(shù)據(jù)獲取與結(jié)構(gòu)化處理(核心代碼 + 指南)

    本文深入解析蘇寧開放平臺(tái)商品詳情接口的技術(shù)對(duì)接方案,重點(diǎn)介紹其多維度數(shù)據(jù)獲取優(yōu)勢(shì)及線下零售場景適配性。文章
    的頭像 發(fā)表于 09-18 10:05 ?299次閱讀

    阿里巴巴開放平臺(tái)商品詳情接口實(shí)操:數(shù)據(jù)解析 + 核心實(shí)現(xiàn)方案(指南)

    本文提供阿里巴巴商品詳情接口的實(shí)用開發(fā)指南,涵蓋B2B場景下的核心功能實(shí)現(xiàn)。重點(diǎn)解析接口基礎(chǔ)參數(shù)、關(guān)鍵返回字段(價(jià)格梯度、SKU、供應(yīng)商信息
    的頭像 發(fā)表于 09-17 13:54 ?146次閱讀

    阿里巴巴開放平臺(tái)關(guān)鍵字搜索商品接口實(shí)戰(zhàn)詳解:OAuth2.0 認(rèn)證落地 + 檢索效率優(yōu)化代碼

    、簽名失敗、檢索頻率超限三大,導(dǎo)致接口調(diào)用成功率低、數(shù)據(jù)獲取效率差。本文結(jié)合 10 年電商 API 對(duì)接經(jīng)驗(yàn), “認(rèn)證落地 - 參數(shù)優(yōu)化
    的頭像 發(fā)表于 09-16 16:26 ?508次閱讀

    淘寶商品詳情 API 實(shí)戰(zhàn):5 大策略提升店鋪轉(zhuǎn)化率(簽名優(yōu)化代碼 + 指南)

    ”“差評(píng)失控” 等轉(zhuǎn)化率殺手。本文結(jié)合我對(duì)接 300 + 淘寶店鋪的實(shí)戰(zhàn)經(jīng)驗(yàn),拆解 API 如何落地動(dòng)態(tài)定價(jià)、庫存預(yù)警等 5 大場景,代碼做了簽名優(yōu)化和錯(cuò)誤處理,新手也能直接復(fù)用,避
    的頭像 發(fā)表于 09-15 10:53 ?558次閱讀

    如何利用京東商品詳情id拿到商品的詳細(xì)信息 示例展示

    利用京東商品詳情 ID(即 SKU ID)獲取商品詳細(xì)信息,可通過京東開放平臺(tái)官方 API 或非官方接口
    的頭像 發(fā)表于 07-10 09:37 ?631次閱讀