chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

谷歌、微軟、亞馬遜看好中國AI市場,借助中國龐大的數(shù)據(jù)集增強(qiáng)訓(xùn)練神經(jīng)網(wǎng)絡(luò)的能力

DPVg_AI_era ? 來源:未知 ? 作者:李倩 ? 2018-09-25 09:34 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在當(dāng)下的國際形勢下,美國各大科技公司對中國AI市場的態(tài)度大不相同,谷歌、微軟、亞馬遜看好中國AI市場,想借助中國龐大的數(shù)據(jù)集增強(qiáng)訓(xùn)練神經(jīng)網(wǎng)絡(luò)的能力,蘋果公司則跟隨特朗普政策。

在如今的國際形式下,美國各大科技公司對中國AI市場的態(tài)度大不相同。

有些公司表示看好,也有些公司打算跟隨特朗普政府的政策。

不過,如果你不擔(dān)心中國政府和美國各大AI公司達(dá)成交易,或者蘋果是如何利用美國的稅法和政治成為全球第一家市值超過萬億美元的公司的話,那么現(xiàn)在可能是利用大科技股填補(bǔ)你的投資組合的好時(shí)機(jī)。

“聰明的人”——對中國AI市場,庫克跟隨特朗普采取善變態(tài)度

據(jù)悉,特朗普政府將從下一輪對華關(guān)稅清單中剔除一類高科技產(chǎn)品,其中包括Apple Watch和AirPods耳機(jī),以及競爭對手制造的類似智能手表、健身跟蹤設(shè)備和其他商品的一個(gè)產(chǎn)品代碼不在清單之列。

這個(gè)產(chǎn)品代碼涵蓋無線設(shè)備和AI產(chǎn)品,包含在美國政府7月份公布的初步清單中。該代碼下的其他蘋果產(chǎn)品包括HomePod揚(yáng)聲器、BeatsWL耳機(jī)以及AirPort和Time Capsule互聯(lián)網(wǎng)路由器。

而這一結(jié)果或許是蘋果CEO蒂姆·庫克上個(gè)月與美國總統(tǒng)和第一夫人共進(jìn)晚餐的功勞。庫克正在采用“要用蜂蜜而不是醋來捕捉蒼蠅”,以最好地保護(hù)蘋果董事會(huì)的利益。而特朗普對待國際貿(mào)易問題,也采用了類似的戰(zhàn)略。

白宮經(jīng)濟(jì)顧問Larry Kudlow 9月17日在紐約經(jīng)濟(jì)俱樂部發(fā)表講話時(shí)提到,政府經(jīng)常與庫克進(jìn)行磋商并認(rèn)真對待他的觀點(diǎn)。

“我們多次與庫克先生交談過。他是一個(gè)非常聰明的人,他給了我們一些很好的建議。“Kudlow說。

谷歌、微軟、亞馬遜看好中國AI市場

與此同時(shí),谷歌、微軟和亞馬遜則希望吸引中國政府開放其龐大的數(shù)據(jù)集。

在國家的扶持下,中國AI項(xiàng)目進(jìn)展順利,并且收集到了全球上最大的共享數(shù)據(jù)集。訪問這些驚人的數(shù)據(jù)集可以立即增強(qiáng)任何AI公司訓(xùn)練神經(jīng)網(wǎng)絡(luò)的能力。但這些全球最富有的科技公司不僅僅是因?yàn)橹袊凝嫶髷?shù)據(jù)集才被吸引過來。

數(shù)據(jù)可能是人工智能的命脈,市場潛力仍是巨大的吸引力,中國是全球最大的細(xì)分市場之一,這就是為何微軟和亞馬遜都宣布計(jì)劃在上海建立AI辦事處的原因。

就這些公司本身而言,谷歌內(nèi)部仍存在一些對中國的抨擊。

然而,目前來看,對待中國AI市場,蘋果的策略是跟隨特朗普采取善變態(tài)度,而其他大科技公司則為了市場選擇忽略內(nèi)部的一些反對聲音, 想借助中國龐大的數(shù)據(jù)集增強(qiáng)訓(xùn)練神經(jīng)網(wǎng)絡(luò)的能力。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 谷歌
    +關(guān)注

    關(guān)注

    27

    文章

    6250

    瀏覽量

    110847
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4832

    瀏覽量

    107376
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1236

    瀏覽量

    26130

原文標(biāo)題:谷歌、微軟、亞馬遜繼續(xù)看好中國AI市場,蘋果選擇跟隨特朗普

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    :   神經(jīng)網(wǎng)絡(luò)卷積函數(shù)   神經(jīng)網(wǎng)絡(luò)激活函數(shù)   全連接層函數(shù)   神經(jīng)網(wǎng)絡(luò)池化函數(shù)   Softmax 函數(shù)   神經(jīng)網(wǎng)絡(luò)支持功能   該庫具有用于操作不同權(quán)重和激活
    發(fā)表于 10-29 06:08

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    模型。 我們使用MNIST數(shù)據(jù)訓(xùn)練一個(gè)卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,用于手寫數(shù)字識別。一旦模型被訓(xùn)練并保存,就可以用于對新圖像進(jìn)行推理和預(yù)
    發(fā)表于 10-22 07:03

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+AI芯片到AGI芯片

    和計(jì)算成本。 核心: MoE模型利用稀疏性驅(qū)動(dòng)結(jié)構(gòu),通過包含多個(gè)專家網(wǎng)絡(luò)的稀疏MoE層替換密集層,其中每個(gè)專家致力于特定的訓(xùn)練數(shù)據(jù)或任務(wù)的子集,并且一個(gè)可訓(xùn)練的門控機(jī)制動(dòng)態(tài)地將輸入標(biāo)記
    發(fā)表于 09-18 15:31

    無刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個(gè)以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實(shí)現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進(jìn)遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)構(gòu)與參數(shù),
    發(fā)表于 06-25 13:06

    基于FPGA搭建神經(jīng)網(wǎng)絡(luò)的步驟解析

    本文的目的是在一個(gè)神經(jīng)網(wǎng)絡(luò)已經(jīng)通過python或者M(jìn)ATLAB訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)模型,將訓(xùn)練好的模型的權(quán)重和偏置文件以TXT文件格式導(dǎo)出,然后通過python程序?qū)xt文件轉(zhuǎn)化為coe
    的頭像 發(fā)表于 06-03 15:51 ?1060次閱讀
    基于FPGA搭建<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的步驟解析

    NVIDIA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)渲染技術(shù)的突破性增強(qiáng)功能

    近日,NVIDIA 宣布了 NVIDIA RTX 神經(jīng)網(wǎng)絡(luò)渲染技術(shù)的突破性增強(qiáng)功能。NVIDIA 與微軟合作,將在 4 月的 Microsoft DirectX 預(yù)覽版中增加神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 04-07 11:33 ?1045次閱讀

    神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計(jì)數(shù)據(jù)怎么查看?

    無法觀察神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計(jì)數(shù)據(jù)
    發(fā)表于 03-06 07:10

    使用BP神經(jīng)網(wǎng)絡(luò)進(jìn)行時(shí)間序列預(yù)測

    使用BP(Backpropagation)神經(jīng)網(wǎng)絡(luò)進(jìn)行時(shí)間序列預(yù)測是一種常見且有效的方法。以下是一個(gè)基于BP神經(jīng)網(wǎng)絡(luò)進(jìn)行時(shí)間序列預(yù)測的詳細(xì)步驟和考慮因素: 一、數(shù)據(jù)準(zhǔn)備 收集數(shù)據(jù)
    的頭像 發(fā)表于 02-12 16:44 ?1443次閱讀

    BP神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)原則

    BP(back propagation)神經(jīng)網(wǎng)絡(luò)是一種按照誤差逆向傳播算法訓(xùn)練的多層前饋神經(jīng)網(wǎng)絡(luò),其網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)原則主要基于以下幾個(gè)方面: 一、層次結(jié)構(gòu) 輸入層 :接收外部輸入信號,不
    的頭像 發(fā)表于 02-12 16:41 ?1459次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個(gè)神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) : CNN主要由卷積層、池化層和全連接層組成。
    的頭像 發(fā)表于 02-12 15:53 ?1572次閱讀

    如何優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率

    優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率是提高模型訓(xùn)練效率和性能的關(guān)鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)率的方法: 一、理解學(xué)習(xí)率的重要性 學(xué)習(xí)率決定了模型參數(shù)在每次迭代時(shí)更新的幅度。過大的學(xué)習(xí)率可能導(dǎo)致模型在
    的頭像 發(fā)表于 02-12 15:51 ?1630次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過訓(xùn)練數(shù)據(jù)自動(dòng)調(diào)整網(wǎng)絡(luò)參數(shù),實(shí)現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務(wù)
    的頭像 發(fā)表于 02-12 15:36 ?1952次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算
    的頭像 發(fā)表于 02-12 15:18 ?1494次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化
    的頭像 發(fā)表于 02-12 15:15 ?1631次閱讀

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓(xùn)練過程主要分為兩個(gè)階段:前向傳播和反向傳播。以下是訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:10 ?1671次閱讀