chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

11種深度學(xué)習(xí)框架影響力對比

羅欣 ? 來源:Medium ? 作者:佚名 ? 2018-10-15 11:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

編者按:Jeff Hale根據(jù)網(wǎng)上招聘、調(diào)研報(bào)告、網(wǎng)絡(luò)搜索、論文、教程、GitHub等數(shù)據(jù),評估了11種深度學(xué)習(xí)框架的影響力。

現(xiàn)在數(shù)據(jù)科學(xué)領(lǐng)域最熱門的方向仍舊是深度學(xué)習(xí)。相應(yīng)地,深度學(xué)習(xí)框架也處于飛速變革之中。現(xiàn)在最流行的框架,除Theano外,5年前都不存在。

我想搜集一些哪個框架更值得關(guān)注的證據(jù),所以我搞了這個影響力評分。我使用了7個不同類別的11個數(shù)據(jù)源,以評估框架的使用量、興趣、流行度。接著我對這些數(shù)據(jù)進(jìn)行加權(quán)組合,得到了本文的結(jié)果。具體的代碼可以在Kaggle Kernel上看到:discdiver/deep-learning-framework-power-scores-2018 2018年9月20日更新:應(yīng)眾多讀者要求,我擴(kuò)大了框架的評估范圍,加入了Caffe、Deeplearning4J、Caffe2、Chainer?,F(xiàn)在的評測包括了KDNuggets使用調(diào)研中所有報(bào)告使用率在1%以上的框架。

2018年9月21日更新:我改進(jìn)了一些測度的方法。

不多啰嗦了,下面是深度學(xué)習(xí)框架的影響力評分:

毫無疑問,TensorFlow位居第一。不過我有一些意料之外的發(fā)現(xiàn),詳情見下。

框架

評測的所有框架都是開源的,除了其中一個框架外都提供了Python接口,有些框架提供了R或其他語言的接口。



TensorFlow是毫無爭議的贏家。GitHub上最熱,谷歌搜索最多,Medium文章、亞馬遜書籍、ArXiv論文最多。使用TensorFlow的開發(fā)者最多,大多數(shù)網(wǎng)上招聘的工作描述中也提到了它。TensorFlow背后站著Google。


Keras擁有“為人類而不是機(jī)器設(shè)計(jì)的API”。幾乎各項(xiàng)評估中,它都是第二流行的框架。Keras以TensorFlow、Theano或CNTK為底層引擎。如果你是深度學(xué)習(xí)的新手,建議從Keras開始。

總體而言,PyTorch是第三流行的框架,也是第二流行的獨(dú)立框架。它比TensorFlow要年輕,流行度的增速十分迅猛。它也支持TensorFlow尚不支持的一些定制。PyTorch背后站著的是Facebook。

Caffe是第四流行的框架。它差不多快5歲了。相對而言,某些雇主還要求熟悉Caffe,一些學(xué)術(shù)論文也還用Caffe,但最近使用Caffe的人不多。

Theano是蒙特利爾大學(xué)2007年研發(fā)的,也是最古老的有顯著影響力的Python深度學(xué)習(xí)框架。它的流行度降了一大截,主要開發(fā)者也宣布不會再發(fā)布加入新功能的大版本了。不過,目前仍有一些更新。Theano仍然是排名第五的框架。

亞馬遜使用Apache孵化的MXNET。它是第六流行的深度學(xué)習(xí)庫。

CNTK是微軟的認(rèn)知工具集。它讓我想起了微軟其他很多產(chǎn)品,試圖和谷歌、Facebook提供的工具競爭,但沒贏得多少使用。

Deeplearning4J,也稱為DL4J,配套Java語言使用。它是唯一不提供Python接口的準(zhǔn)流行框架。不過,你可以導(dǎo)入用Keras寫的模型。這也是唯一一個兩個不同的搜索項(xiàng)(Deeplearning4J和DL4J)偶爾返回不同結(jié)果的框架。我在每項(xiàng)測度中使用了較高的數(shù)字。由于這個框架的評分相當(dāng)?shù)?,因此這并沒有帶來什么實(shí)質(zhì)性的改變。

Caffe2是另一個Facebook開源產(chǎn)品。它基于Caffe構(gòu)建,現(xiàn)在是PyTorch項(xiàng)目的一部分(同一GitHub倉庫)。由于現(xiàn)在Caffe2沒有自己的代碼倉庫,我使用了舊倉庫的GitHub數(shù)據(jù)。

Chainer是由日本公司Preferred Networks開發(fā)的框架。它有一小批使用者。

FastAI基于PyTorch構(gòu)建。它的API借鑒了Keras,只需很少的代碼(比Keras還要少)就可以得到強(qiáng)力的結(jié)果。目前而言,F(xiàn)astAI屬于前沿框架,目前正處于為預(yù)計(jì)2018年10月發(fā)布的1.0版本重寫代碼的階段。FastAI的作者Jeremy Howard是Kaggle的主席。他曾經(jīng)寫過一篇Introducing Pytorch for fast.ai,討論為何FastAI從使用Keras轉(zhuǎn)向創(chuàng)建自己的框架。

現(xiàn)在還沒有什么職位需要用這個框架,本身使用也不廣泛。然而,由于FastAI的免費(fèi)在線課程很流行,自然而然就有不少使用者。這個框架強(qiáng)大易用,因此可能會很快普及。

標(biāo)準(zhǔn)

我選擇了以下7個類別來評估深度學(xué)習(xí)框架的流行度和關(guān)注度。

在線招聘描述

KDnuggets使用調(diào)研

谷歌搜索量

Medium文章

亞馬遜數(shù)據(jù)

ArXiv論文

GitHub熱度

數(shù)據(jù)采集自2018年9月16日至2018年9月21日,源數(shù)據(jù)可以通過谷歌試算表訪問:https://docs.google.com/spreadsheets/d/1mYfHMZfuXGpZ0ggBVDot3SJMU-VsCsEGceEL8xd1QBo/edit?usp=sharing

我使用了Python的pandas庫探索流行度,并使用plotly庫進(jìn)行可視化。如果你想要查看可交互的plotly圖表,請?jiān)L問我在文章開頭提到過的Kaggle Kernel。

在線招聘描述

現(xiàn)在的工作市場上哪種深度學(xué)習(xí)庫需求更高?我搜集了LinkedIn、Indeed、Simply Hired、Monster、Angel List的上的數(shù)據(jù)。

毫無疑問,TensorFlow是這方面的贏家。如果你想找一份深度學(xué)習(xí)的工作,可以學(xué)一下TensorFlow。

我通過“machine learning”(機(jī)器學(xué)習(xí))加庫名的方式搜索。比如,“machine learning TensorFlow”。我測試了若干搜索方法,這個方法可以得到相關(guān)性最高的結(jié)果。

之所以額外加上一個搜索詞,是因?yàn)橛行┛蚣艿拿挚赡苡衅缌x,比如Caffe可能有多種含義。

使用量

KDnuggets是一個流行的數(shù)據(jù)科學(xué)網(wǎng)站。它在調(diào)研軟件使用情況的時候提問:

你在過去12個月的真實(shí)項(xiàng)目上用了什么分析、大數(shù)據(jù)、數(shù)據(jù)科學(xué)、機(jī)器學(xué)習(xí)軟件?

讓人有點(diǎn)意外的是,Keras的使用量很高——差不多快趕上TensorFlow了。有意思,美國的雇主們熱衷找具備TensorFlow技術(shù)的人,而Keras的使用率差不多一樣高。

KDnuggets有好幾年的數(shù)據(jù)。盡管我在分析中只使用了2018年的數(shù)據(jù),我需要指出,2017年后,Caffe、Theano、MXNET、CNTK的使用量下降了。

谷歌搜索熱度

最大搜索引擎上的網(wǎng)絡(luò)搜索量是一項(xiàng)很好的評估流行度的指標(biāo)。我查看了過去一年谷歌趨勢的搜索歷史。谷歌沒有提供搜索量的絕對值,不過它提供了不同搜索項(xiàng)的對比圖形。

Keras和TensorFlow的差距不大,PyTorch位居第三,其他框架的搜索量相對較低。

現(xiàn)在,讓我們簡單看下搜索量隨時間的改變趨勢,這能提供歷史上下文。Google自帶兩年搜索趨勢變化的圖表。

紅:TensorFlow;黃:Keras;藍(lán):PyTorch;綠:Caffe

過去一年里,TensorFlow的搜索量沒什么顯著增長,但Keras和PyTorch的搜索量增加了。谷歌趨勢只允許同時比較五個搜索項(xiàng),所以其他框架在另外的圖表上比較——都沒顯示出什么明顯的趨勢,除了相對TensorFlow而言極低的搜索量。

發(fā)表

我納入了多種發(fā)表類型。讓我們先看下Medium文章。

Medium文章

Medium上有很多流行的數(shù)據(jù)科學(xué)文章和指南。


終于出現(xiàn)新贏家了,Keras超過了TensorFlow,而相比其他評估項(xiàng),F(xiàn)astAI的表現(xiàn)很突出。

我猜想這可能是因?yàn)镵eras和FastAI對初學(xué)者更友好。新的深度學(xué)習(xí)從業(yè)者對這兩個框架的興趣較大,而Medium上有大量教程。

我使用了谷歌的站內(nèi)搜索,限定時間為12個月內(nèi),使用框架名加“l(fā)earning”(學(xué)習(xí))作為關(guān)鍵詞——同樣是為了避免“caffe”帶來的歧義。相比其他關(guān)鍵詞組合,這導(dǎo)致的搜索結(jié)果下降最少。

現(xiàn)在讓我們看下亞馬遜上有關(guān)這些框架的書籍?dāng)?shù)量。

亞馬遜書籍

我在Amazon.com的圖書 > 計(jì)算機(jī)技術(shù)分類下搜索每個深度學(xué)習(xí)框架的名稱。

TensorFlow又獲勝了。MXNET的書比期望的多,而Theano的書比期望的少。相對其流行度而言,PyTorch的書不多,這可能是因?yàn)檫@個框架比較年輕。注意這一測量偏向老框架,因?yàn)闀某霭嬷芷诒容^長。

ArXiv論文

機(jī)器學(xué)習(xí)方面的學(xué)術(shù)論文,最常發(fā)表在ArXiv上。我同樣使用谷歌站內(nèi)搜索,限定時間為12個月內(nèi)。

TensorFlow還是第一。注意,相比學(xué)術(shù)論文而言,Keras在Meidum和亞馬遜上要流行得多。PyTorch在這一類別排名第二,顯示它在實(shí)現(xiàn)新想法方面的靈活性。Caffe的評分也相對較好。

GitHub熱度

GitHub熱度是另一項(xiàng)框架流行度的指標(biāo)。我為收藏、分叉、關(guān)注、貢獻(xiàn)者分別制作了圖表,因?yàn)檫@些數(shù)據(jù)更適合分別呈現(xiàn),而不是混在一起。

TensorFlow也是最流行的,有大量活躍用戶。考慮到FastAI甚至還不滿一歲,它在GitHub上的熱度相當(dāng)不錯。有意思的是,相比另外三個測度,不同框架的貢獻(xiàn)者數(shù)量總體而言比較接近。

收集、分析了所有數(shù)據(jù)后,是時候?qū)⑺鼈冋铣梢粋€測度了。

影響力評分過程

我是這樣得出影響力評分的:

將所有特征的尺度縮放至0到1

聚合在線招聘描述和GitHub熱度的子類別

根據(jù)下圖的權(quán)重對類別進(jìn)行加權(quán)

如上圖所示,在線招聘描述、KDnuggets一組,網(wǎng)絡(luò)搜索、發(fā)表、GitHub熱度一組,平分權(quán)重。這樣劃分看起來是最合適的,平衡了多種類別。

為了便于查看,各項(xiàng)加權(quán)評分乘以100

累加每個框架的各項(xiàng)評分以得到單一的影響力評分

下為各個類別的統(tǒng)計(jì)數(shù)據(jù):

下為加權(quán)和聚合子類別后的各項(xiàng)評分:

這就得到了文章開頭的圖表:

100是最高可能得分,意味著在所有類別都是第一。TensorFlow幾乎達(dá)到了100分,這并不令人意外,畢竟它在每個類別中都是第一(或者幾乎是第一)。Keras毫無爭議地位居第二。

我再重復(fù)一遍,如果你想要以可交互的方式查看圖表,或者分叉Jupyter Notebook,請?jiān)L問我開頭提到的Kaggle Kernel。

未來

目前為止,TensorFlow的領(lǐng)先地位難以動搖。短期內(nèi),它應(yīng)該會繼續(xù)統(tǒng)治深度學(xué)習(xí)領(lǐng)域。不過,考慮到深度學(xué)習(xí)世界的飛速變革,長期來看,TensorFlow的領(lǐng)先可能發(fā)生變化。

時間會告訴我們,PyTorch是否能超越TensorFlow,就像React超越Angular一樣。這兩對框架還挺適合類比的。PyTorch和React都是由Facebook支撐的靈活度很高的框架,通常認(rèn)為要比谷歌支撐的競爭者更容易使用。

FastAI能獲取課程之外的用戶嗎?它有一大堆自帶的學(xué)生用戶,比Keras對初學(xué)者更友好的API。

你覺得未來會怎么樣?請留言分享你的想法。

給學(xué)習(xí)者的建議

如果你掌握了Python、numpy、pandas、sklearn、matplotlib技能,考慮學(xué)習(xí)一個深度學(xué)習(xí)框架,我建議你從Keras開始。它的用戶數(shù)量很大,也受到雇主的認(rèn)可,Medium上也有很多文章可以參考,API也很容易使用。

如果你已經(jīng)掌握了Keras,決定下一個要學(xué)習(xí)的框架不太容易。我建議你選擇TensorFlow或者PyTorch,深入學(xué)習(xí),以做出很棒的深度學(xué)習(xí)模型。

如果你想要熟練掌握需求量最大的框架,你應(yīng)該選擇TensorFlow。但研究人員很喜歡用PyTorch,因?yàn)樗纫子糜朱`活。Quora上有一個關(guān)于選TensorFlow還是PyTorch的問題:https://www.quora.com/Should-I-go-for-TensorFlow-or-PyTorch

如果你具備了這些框架的經(jīng)驗(yàn),我建議你留意下FastAI。如果你想學(xué)習(xí)基礎(chǔ)和高級的深度學(xué)習(xí)技能,可以看下FastAI的免費(fèi)在線課程。FastAI 1.0許諾讓你可以很容易地實(shí)現(xiàn)最新的深度學(xué)習(xí)策略,并快速迭代。

不管你選什么框架,我希望你現(xiàn)在對哪個深度學(xué)習(xí)框架需求最高,使用最多,文章最多有所了解。

本文來源:Medium

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    晶科能源入選2025年《財(cái)富》中國ESG影響力

    近日,全球領(lǐng)先的光伏企業(yè)晶科能源,憑借卓越的可持續(xù)發(fā)展理念、技術(shù)創(chuàng)新以及零碳解決方案等杰出貢獻(xiàn),從全球300余家企業(yè)中脫穎而出,繼2024年之后,再次上榜2025年《財(cái)富》中國ESG影響力榜,彰顯了晶科能源的ESG行業(yè)影響力及企業(yè)榜樣力量。
    的頭像 發(fā)表于 05-23 15:32 ?426次閱讀

    海信入選2025年《財(cái)富》中國ESG影響力

    近日,2025年《財(cái)富》中國ESG影響力榜揭曉,憑借在改善環(huán)境、綠色科技、服務(wù)員工、支持社區(qū)上做出的卓越努力,海信集團(tuán)連續(xù)4年入選該榜單。
    的頭像 發(fā)表于 05-19 17:49 ?576次閱讀

    嵌入式AI技術(shù)之深度學(xué)習(xí):數(shù)據(jù)樣本預(yù)處理過程中使用合適的特征變換對深度學(xué)習(xí)的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)機(jī)器學(xué)習(xí),網(wǎng)絡(luò)的每個層都將對輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成深度學(xué)習(xí)框架,可以深度理解數(shù)
    的頭像 發(fā)表于 04-02 18:21 ?890次閱讀

    2024施耐德電氣“可持續(xù)影響力獎”重磅出爐

    2024施耐德電氣“可持續(xù)影響力獎”,國家及區(qū)域評選結(jié)果重磅出爐!憑借在可持續(xù)發(fā)展領(lǐng)域的卓越表現(xiàn),中國區(qū)遴選出13家獲獎企業(yè)!
    的頭像 發(fā)表于 03-10 11:32 ?577次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度學(xué)習(xí)的定義與發(fā)展
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    飛騰榮登CSDN 2024中國開發(fā)者影響力年度榜單

    近日,CSDN 2024中國開發(fā)者影響力年度榜單揭曉,飛騰信息技術(shù)有限公司(以下簡稱“飛騰”)憑借OurBMC開源社區(qū)的卓越貢獻(xiàn)與深厚實(shí)力榮獲年度“根技術(shù)企業(yè)”,由飛騰打造的創(chuàng)新產(chǎn)品OpenFDE憑借其創(chuàng)新性與廣泛的應(yīng)用前景,榮獲“年度影響力產(chǎn)品-創(chuàng)新產(chǎn)品與解決方案”獎項(xiàng)
    的頭像 發(fā)表于 01-23 10:00 ?579次閱讀

    華寶新能榮獲2024年IT影響中國“年度影響力企業(yè)獎”

    近日,2024年度IT影響中國評選結(jié)果正式揭曉,深圳市華寶新能源股份有限公司憑借其強(qiáng)大的品牌、卓越的技術(shù)創(chuàng)新能力以及在全球市場的廣泛影響力,榮獲“年度影響力企業(yè)獎”。
    的頭像 發(fā)表于 12-26 09:36 ?626次閱讀

    如何在化學(xué)和材料科學(xué)領(lǐng)域開展有影響力的人工智能研究?(三)

    第三部分編譯后的內(nèi)容:4.如何解決科學(xué)問題?在掌握了上述的工具和視角后,我們將提出一些建議,幫助您在化學(xué)領(lǐng)域選擇具有影響力的研究課題,并介紹機(jī)器學(xué)習(xí)問題的高層次結(jié)構(gòu)。最后,我們將概述機(jī)器學(xué)習(xí)在化學(xué)
    的頭像 發(fā)表于 12-03 01:02 ?496次閱讀
    如何在化學(xué)和材料科學(xué)領(lǐng)域開展有<b class='flag-5'>影響力</b>的人工智能研究?(三)

    NPU在深度學(xué)習(xí)中的應(yīng)用

    設(shè)計(jì)的硬件加速器,它在深度學(xué)習(xí)中的應(yīng)用日益廣泛。 1. NPU的基本概念 NPU是一專門針對深度學(xué)習(xí)算法優(yōu)化的處理器,它與傳統(tǒng)的CPU和G
    的頭像 發(fā)表于 11-14 15:17 ?1922次閱讀

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識別 圖像識別是深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?1384次閱讀

    激光雷達(dá)技術(shù)的基于深度學(xué)習(xí)的進(jìn)步

    信息。這使得激光雷達(dá)在自動駕駛、無人機(jī)、機(jī)器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學(xué)習(xí)技術(shù)的發(fā)展 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個分支,它通過模擬人
    的頭像 發(fā)表于 10-27 10:57 ?1071次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?2900次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    ,共同進(jìn)步。 歡迎加入FPGA技術(shù)微信交流群14群! 交流問題(一) Q:FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?現(xiàn)在用FPGA做深度學(xué)習(xí)加速成為一個熱門,深鑒科技,商湯,曠視科技等都有基于FPG
    發(fā)表于 09-27 20:53

    迅鐳激光榮獲激光行業(yè)影響力企業(yè)獎

    第七屆“紅光獎”2024年度激光行業(yè)創(chuàng)新貢獻(xiàn)獎頒獎典禮在深圳國際會展中心洲際酒店隆重舉辦。迅鐳激光在本屆評選中,憑借卓越實(shí)力和行業(yè)影響力榮獲“激光行業(yè)影響力企業(yè)獎”!
    的頭像 發(fā)表于 09-12 14:55 ?639次閱讀

    NVIDIA推出全新深度學(xué)習(xí)框架fVDB

    在 SIGGRAPH 上推出的全新深度學(xué)習(xí)框架可用于打造自動駕駛汽車、氣候科學(xué)和智慧城市的 AI 就緒型虛擬表示。
    的頭像 發(fā)表于 08-01 14:31 ?1152次閱讀