chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

斯坦福全球AI報(bào)告正式發(fā)布,全面追蹤人工智能的發(fā)展現(xiàn)狀和趨勢(shì)

機(jī)器人創(chuàng)新生態(tài) ? 來(lái)源:lq ? 2018-12-14 11:22 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

剛剛,斯坦福全球AI報(bào)告正式發(fā)布。

從去年開(kāi)始,斯坦福大學(xué)主導(dǎo)、來(lái)自MIT、OpenAI、哈佛、麥肯錫等機(jī)構(gòu)的多位專(zhuān)家教授,組建了一個(gè)小組,每年發(fā)布AI index年度報(bào)告,全面追蹤人工智能的發(fā)展現(xiàn)狀和趨勢(shì)。

“我們用硬數(shù)據(jù)說(shuō)話?!眻?bào)告的負(fù)責(zé)人、斯坦福大學(xué)教授、前任谷歌首席科學(xué)家Yoav Shoham談到這份最新的報(bào)告時(shí)表示。

今年的報(bào)告,從學(xué)術(shù)、工業(yè)、開(kāi)源、政府等方面詳細(xì)介紹了人工智能發(fā)展的現(xiàn)狀,并且記錄了計(jì)算機(jī)視覺(jué)、自然語(yǔ)言理解等領(lǐng)域的技術(shù)進(jìn)展。

報(bào)告要點(diǎn):

一、美國(guó)AI綜合實(shí)力最強(qiáng)

美國(guó)的AI論文發(fā)布數(shù)量雖然不是第一,但美國(guó)學(xué)者論文被引用的次數(shù)卻是全球第一,比全球平均水平高出83%。

2018年美國(guó)AI創(chuàng)業(yè)公司的數(shù)量,比2015年增長(zhǎng)2.1倍。而從2013年到2017年,美國(guó)AI初創(chuàng)企業(yè)獲得的融資額增長(zhǎng)了4.5倍。均高于平均水平一倍以上。

二、中國(guó)AI追趕速度驚人

清華2017年學(xué)AI和機(jī)器學(xué)習(xí)的學(xué)生數(shù)量,是2010年16倍。

70%的AAAI論文來(lái)自美國(guó)或中國(guó),兩國(guó)獲接收的論文數(shù)量相近,但中國(guó)提交的論文總量比美國(guó)多30%。

基于經(jīng)同行評(píng)議論文數(shù)據(jù)庫(kù)Scopus的數(shù)據(jù),2018年發(fā)布AI論文最多的地區(qū)是歐洲(28%)、中國(guó)(25%)和美國(guó)(17%)。

與2000相比,2016年中國(guó)AI學(xué)者論文被引用的次數(shù),提高了44%。

中國(guó)一年的機(jī)器人部署安裝量,從2012到現(xiàn)在增長(zhǎng)了500%。ROS.org來(lái)自中國(guó)的訪問(wèn)量,2017年比2012年增加了18倍。

三、全球AI發(fā)展提速但仍不均衡

2017年,全球ML人才需求已經(jīng)是2015年的35倍。

整體來(lái)說(shuō),自2016年以來(lái),美國(guó)、加拿大、英國(guó)政府在國(guó)會(huì)/議會(huì)會(huì)議中對(duì)人工智能和機(jī)器學(xué)習(xí)的提及激增。

80%的AI教授是男性,統(tǒng)計(jì)數(shù)據(jù)來(lái)自UC伯克利、斯坦福、UIUC、CMU、UC London、牛津和蘇黎世聯(lián)邦理工學(xué)院。

美國(guó)AI工作崗位的應(yīng)聘者中71%為男性。

看過(guò)這份報(bào)告之后,人工智能大牛吳恩達(dá)總結(jié)了兩點(diǎn):1、AI正在快速發(fā)展,不管是學(xué)術(shù)界還是工業(yè)界都是如此。2、AI的發(fā)展仍不均衡,在多樣性、包容性方面仍需努力。

以下是這份報(bào)告的主要內(nèi)容:

AI論文情況分析

發(fā)表總量增長(zhǎng)迅猛

從1996年到2017年,CS領(lǐng)域的年發(fā)表論文增長(zhǎng)了約五倍 (6x) ,AI領(lǐng)域的年發(fā)表論文增長(zhǎng)了約七倍 (8x) 。對(duì)比一下,所有學(xué)科的年發(fā)表論文總量增長(zhǎng)了不到兩倍 (<3x) 。

劃重點(diǎn),AI論文的年發(fā)表量,比CS論文增長(zhǎng)要快。

各地區(qū)AI論文發(fā)表情況

2017年,Scopus上面的AI論文,有83%來(lái)自美國(guó)以外的地方。具體數(shù)據(jù)是,28%來(lái)自歐洲,25%來(lái)自中國(guó),17%來(lái)自美國(guó)。

從2007年到2017年,中國(guó)的年發(fā)表AI論文數(shù)增長(zhǎng)了150%。

細(xì)分領(lǐng)域論文發(fā)表情況

2017年發(fā)表的AI論文中,有56%來(lái)自機(jī)器學(xué)習(xí)與概率推理這一研究方向。

對(duì)比一下,2010年發(fā)表的AI論文,只有28%來(lái)自這個(gè)方向。

另外,圖表里顯示的大部分研究方向,在2014-2017年間,復(fù)合年均增長(zhǎng)率 (CAGR) 比2010-2014年要高。

比如,神經(jīng)網(wǎng)絡(luò)這一方向的論文發(fā)表數(shù)量,2014-2017年之間,復(fù)合年均增長(zhǎng)率達(dá)到37%(如圖中紅色曲線) ,最為突出。

做個(gè)對(duì)比,在2010-2014年之間,神經(jīng)網(wǎng)絡(luò)論文發(fā)表數(shù),復(fù)合年均增長(zhǎng)率僅有3%。

arXiv論文

自2010年以來(lái),arXiv論文總體呈現(xiàn)迅速增長(zhǎng),從2010年發(fā)布的1,073篇,到2017年發(fā)布的13,325篇,增長(zhǎng)超過(guò)11倍(12x) 。許多細(xì)分領(lǐng)域也呈現(xiàn)增長(zhǎng)。

這表示,論文作者們傾向于把自己的研究成果傳播出去,不論是經(jīng)過(guò)同行評(píng)審還是在AI會(huì)議上發(fā)表的論文。這也體現(xiàn)了,AI這個(gè)領(lǐng)域競(jìng)爭(zhēng)激烈的特質(zhì)。

在細(xì)分領(lǐng)域中,計(jì)算機(jī)視覺(jué)(CV) 是自2014年起增長(zhǎng)最快的一個(gè) (上圖藍(lán)色曲線) ,從1,099篇增長(zhǎng)到2017年的4,895篇,漲幅近400%。

AI論文引用量

FWCI是領(lǐng)域權(quán)重引用影響系數(shù),可以用來(lái)衡量論文的影響力。

報(bào)告重新定義了一種“改裝版” (Re-based) 的FWCI,不按地區(qū),而按世界平均值,來(lái)計(jì)算影響力。

在這個(gè)標(biāo)準(zhǔn)之下,雖然歐洲發(fā)表的AI論文數(shù)高于中國(guó)和美國(guó),不過(guò)論文影響力曲線比較平緩;相比之下,中國(guó)發(fā)表的論文影響力增長(zhǎng)劇烈:與2000年相比,2016年平均每位中國(guó)AI論文作者的引用率增長(zhǎng)了44%。

不過(guò)在這方面,美國(guó)依然全球領(lǐng)先,美國(guó)AI論文作者的平均引用率,比世界平均值高出83%。

AAAI論文

AAAI 2018,提交論文,中美占70%,中選論文,中美占67%。

中國(guó)的論文提交數(shù)高出美國(guó)約1/3,但二者中選論文數(shù)相差無(wú)幾,中國(guó)入選265篇,美國(guó)入選268篇。

高校AI課程注冊(cè)情況

AI和ML進(jìn)軍高校的速度提升了不少。

報(bào)告顯示,截止到2017年底,AI課程注冊(cè)人數(shù)是2012年的3.4倍,ML課程注冊(cè)人數(shù)是2012年的5倍。

其中,UC伯克利的ML課程的注冊(cè)人數(shù)增長(zhǎng)最快,是2012年的6.8倍,但此數(shù)值較2016年增長(zhǎng)速度有明顯下降。

報(bào)告進(jìn)一步統(tǒng)計(jì)了非美國(guó)地區(qū)院校AI+ML課程注冊(cè)人數(shù)的變化。結(jié)果顯示,清華是非美國(guó)院校外增長(zhǎng)率最高的高校,幾乎是第二名多倫多大學(xué)的2倍。

縱向?qū)Ρ葋?lái)看,清華2017年AI+ML課程注冊(cè)人數(shù)是2010年的16倍。

學(xué)術(shù)會(huì)議熱度

在大型會(huì)議中,NeurIPS (曾用名NIPS) 、CVPR和ICML,是參與人數(shù)最多的三大AI會(huì)議。自2012年以來(lái),論參與人數(shù)的增長(zhǎng)率,這三者也領(lǐng)先于其他會(huì)議。

NeurIPS和ICML參與人數(shù)增長(zhǎng)最快:將2018年與2012年相比,NeuRIPS增長(zhǎng)3.8倍 (4.8x) ,ICML增長(zhǎng)5.8倍 (6.8x) 。

上面討論的是大型會(huì)議,但小型會(huì)議的參與人數(shù)同樣有明顯的增長(zhǎng),甚至可以比大型會(huì)議的增長(zhǎng)更加明顯。

這里最突出的是,ICLR 2018的參會(huì)人數(shù)達(dá)到了2012年的20倍。

原因很可能是近年來(lái),AI領(lǐng)域越來(lái)越關(guān)注深度學(xué)習(xí)和強(qiáng)化學(xué)習(xí)了。

AI創(chuàng)業(yè)投資情況

從2015年1月到2018年1月,人工智能創(chuàng)業(yè)公司的數(shù)量增長(zhǎng)到了原來(lái)的2.1倍,而所有活躍的創(chuàng)業(yè)公司增長(zhǎng)到了原來(lái)的1.3倍。

大多數(shù)情況下,創(chuàng)業(yè)公司的增長(zhǎng)都保持相對(duì)穩(wěn)定,而人工智能創(chuàng)業(yè)公司呈指數(shù)級(jí)增長(zhǎng)。

在風(fēng)投資金方面,從2013年到2017年,人工智能領(lǐng)域的風(fēng)投資金增長(zhǎng)到了原來(lái)的4.5倍,而所有的風(fēng)投資金只增長(zhǎng)到了原來(lái)的2.08倍。這些數(shù)據(jù)都是年度數(shù)據(jù),不是逐年累積的。

圖表中有兩個(gè)高峰期,1997-2000年風(fēng)投資金的激增,對(duì)應(yīng)的是網(wǎng)絡(luò)泡沫時(shí)期。2014-2015年出現(xiàn)了一個(gè)較小的增長(zhǎng),因?yàn)楫?dāng)時(shí)正處于一個(gè)相對(duì)較大的經(jīng)濟(jì)增長(zhǎng)時(shí)期。

人才需求

報(bào)告顯示,近幾年,社會(huì)需要的AI相關(guān)人才大幅度增加,目前對(duì)有ML技能的人才需求最大,其次是深度學(xué)習(xí)。

可以看出,ML人才需求也是這兩年增長(zhǎng)速度最快的。

報(bào)告統(tǒng)計(jì),2017年,全球ML人才需求是2015年的35倍,從2016年到2017年的增幅尤為明顯。全球?qū)I人才的需求在2016年驟增。

專(zhuān)利

2014年,大約30%的人工智能專(zhuān)利發(fā)明人來(lái)自美國(guó),其次是韓國(guó)和日本,各擁有16%。

在韓國(guó)和中國(guó)***地區(qū),專(zhuān)利的增長(zhǎng)速度較快。2014年人工智能專(zhuān)利的數(shù)量幾乎是2004年的5倍。

財(cái)報(bào)電話會(huì)議中提及AI和ML的次數(shù)

2015年,科技公司在財(cái)報(bào)電話會(huì)議中提及AI和ML的次數(shù)開(kāi)始有所增加。

2016年,其他行業(yè)提及AI次數(shù)才開(kāi)始增長(zhǎng)。

相比之下,科技行業(yè)的公司提及AI和ML的次數(shù)遠(yuǎn)比其他行業(yè)多。

在財(cái)報(bào)電話會(huì)議中,除了科技行業(yè)之外,提及AI次數(shù)最多的公司,基本上分布在消費(fèi)、金融和醫(yī)療保健行業(yè)。

機(jī)器人安裝量

2012年到2017年,中國(guó)機(jī)器人年安裝量增長(zhǎng)了500%,其他地區(qū),比如韓國(guó)和歐洲,分別增長(zhǎng)了105%和122%。

在安裝量較小的地區(qū)中,中國(guó)***比較突出,在2012-2017年增長(zhǎng)最快。

開(kāi)源框架GitHub標(biāo)星數(shù)

各框架的標(biāo)星數(shù)反映著他們?cè)?a target="_blank">開(kāi)發(fā)者群體中的流行程度。不過(guò),因?yàn)殚_(kāi)發(fā)者們?nèi)粘2粫?huì)“取關(guān)”GitHub項(xiàng)目,所以這些星星都是多年來(lái)積攢下的。

我們可以明顯發(fā)現(xiàn),TensorFlow的受歡迎程度在開(kāi)發(fā)者中遙遙領(lǐng)先、穩(wěn)步增長(zhǎng)。

排除了第一熱門(mén),第二名和第三名分別是scikit-learn和BVLC/caffe。

TensorFlow官方力推的keras排到了第四,但近一年來(lái)幾無(wú)增長(zhǎng)勢(shì)頭。

另外兩大熱門(mén)PyTorch和MXNet分別排到了第七和第六,尤其是PyTorch,作為一個(gè)年輕的框架,自2017年初發(fā)布以來(lái)至今,GitHub標(biāo)星數(shù)至少增長(zhǎng)了4倍。獲取新用戶(hù)的勢(shì)頭很猛,不知道其中有多少被TensorFlow逼瘋的人類(lèi)。

各類(lèi)任務(wù)最新成績(jī)

這個(gè)部分分為CV和NLP兩塊,分別列舉了各主流任務(wù)從發(fā)展之初到現(xiàn)在的成績(jī)進(jìn)步情況。

ImageNet圖像識(shí)別準(zhǔn)確率

2017年是ImageNet比賽的最后一屆,2018年這項(xiàng)比賽就不再進(jìn)行了。不過(guò),驗(yàn)證集依然有人在用。

圖中,藍(lán)色的線條為ImageNet挑戰(zhàn)賽歷年的成績(jī)變化,由于每年比賽所用的數(shù)據(jù)不同,旁邊多了一條黃色線條,是以ImageNet 2012驗(yàn)證集為評(píng)價(jià)標(biāo)準(zhǔn)繪制的。

可以看出,到2015年,機(jī)器在圖像分類(lèi)任務(wù)上的能力已經(jīng)明顯超越了人眼,而即使比賽不再繼續(xù),學(xué)術(shù)研究者依然在認(rèn)真推進(jìn)該任務(wù)的表現(xiàn)。

這也側(cè)面說(shuō)明,如果一項(xiàng)工作有了明確的評(píng)價(jià)標(biāo)準(zhǔn)和固定的挑戰(zhàn)內(nèi)容,研究者們圍繞此競(jìng)爭(zhēng),更容易讓技術(shù)在該領(lǐng)域取得突破。

ImageNet訓(xùn)練速度

這張圖是訓(xùn)練ImageNet圖像分類(lèi)神經(jīng)網(wǎng)絡(luò)所需時(shí)間的歷年變化(當(dāng)然,是買(mǎi)得起足夠計(jì)算資源的人和機(jī)構(gòu)所用的時(shí)長(zhǎng))。

從2017年6月的1小時(shí),到2018年11月的4分鐘,ImageNet圖像分類(lèi)神經(jīng)網(wǎng)絡(luò)的訓(xùn)練速度提升了16倍,除了硬件方面的貢獻(xiàn),算法上的提升也不容小覷。

圖像分割COCO

ImageNet挑戰(zhàn)賽“退休”之后,CV領(lǐng)域的朋友們就把重點(diǎn)放在了微軟的COCO,挑戰(zhàn)語(yǔ)義分割和實(shí)例分割。

四年來(lái),COCO數(shù)據(jù)集上圖像分割挑戰(zhàn)的精確度已經(jīng)提升了0.2,2018年的成績(jī)比2015提升了72%。不過(guò),目前還沒(méi)有超過(guò)0.5,這一項(xiàng)還有充足的進(jìn)步空間。

另外值得一提的是,COCO比賽近年來(lái)占據(jù)冠軍位置的多是來(lái)自中國(guó)的公司,包括曠視、商湯等計(jì)算機(jī)視覺(jué)獨(dú)角獸日常包攬數(shù)個(gè)項(xiàng)目的冠軍。

語(yǔ)法分析(Parsing)

在確定句子結(jié)構(gòu)這種語(yǔ)法分析的任務(wù)上,2003年到2018年的15年間,AI的表現(xiàn)(F1 Score得分)提升了將近10%。

機(jī)器翻譯

在機(jī)器翻譯任務(wù)上,報(bào)告拿英語(yǔ)-德語(yǔ)互相翻譯舉例,評(píng)估了AI模型在經(jīng)典機(jī)器翻譯評(píng)估算法BLEU標(biāo)準(zhǔn)中的表現(xiàn)。

報(bào)告顯示,2018年英語(yǔ)轉(zhuǎn)德語(yǔ)的BLEU評(píng)分是2008年的3.5倍,德語(yǔ)轉(zhuǎn)英語(yǔ)成績(jī)是2008年的2.5倍。

機(jī)器問(wèn)答:AI2 Reasoning Challenge(ARC)

在問(wèn)答領(lǐng)域,AI表現(xiàn)進(jìn)步更明顯,可以按月計(jì)數(shù)了。

報(bào)告統(tǒng)計(jì)了2018年從四月到11月間,AI在ARC推理挑戰(zhàn)賽上成績(jī)的變化:簡(jiǎn)單組得分從63%提升到69%,挑戰(zhàn)組得分從27%提升到42%。

這些,都僅是半年間的進(jìn)步。

機(jī)器問(wèn)答:GLUE

同樣用于機(jī)器問(wèn)答的GLUE基準(zhǔn)(General Language Understanding Evaluation)推出至今只有7個(gè)月的時(shí)間,但目前的表現(xiàn)已經(jīng)比半年前提升了90%。

GLUE的推出者、紐約大學(xué)助理教授Sam Bowman說(shuō),雖然圍繞GLUE的大型社區(qū)還沒(méi)有出現(xiàn),不過(guò)已經(jīng)有了像谷歌BERT這樣的代表性技術(shù)用了GLUE基準(zhǔn),面世一個(gè)月內(nèi)已經(jīng)被引用8次。在EMNLP會(huì)議中,GLUE時(shí)常被討論,可能會(huì)成為語(yǔ)言理解領(lǐng)域中的一個(gè)基準(zhǔn)線。

政府提及

整體來(lái)說(shuō),自2016年以來(lái),美國(guó)、加拿大、英國(guó)政府在國(guó)會(huì)/議會(huì)會(huì)議中提及人工智能和機(jī)器學(xué)習(xí)的次數(shù)激增。

2016年之前,機(jī)器學(xué)習(xí)很少被提及,與人工智能相比,機(jī)器學(xué)習(xí)在總提及量中只占很小的一部分。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:【附下載】斯坦福全球AI報(bào)告:人才需求兩年暴增35倍,中國(guó)機(jī)器人部署量漲500%

文章出處:【微信號(hào):robotplaces,微信公眾號(hào):機(jī)器人創(chuàng)新生態(tài)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    云知學(xué)院攜手合作伙伴構(gòu)建AI人才生態(tài)

    從國(guó)務(wù)院部署“人工智能+”行動(dòng),推動(dòng)AI與教育、產(chǎn)業(yè)、民生等重點(diǎn)領(lǐng)域深度融合發(fā)展,到中國(guó)在斯坦福大學(xué)發(fā)布的《2025年
    的頭像 發(fā)表于 11-26 09:22 ?449次閱讀

    GMate發(fā)布《2025全球AI內(nèi)容營(yíng)銷(xiāo)趨勢(shì)報(bào)告

    報(bào)告顯示:到2026年,全球70%以上品牌內(nèi)容將由AI輔助生成,AI營(yíng)銷(xiāo)進(jìn)入“全自動(dòng)增長(zhǎng)”新紀(jì)元。 ? 10月,AI營(yíng)銷(xiāo)創(chuàng)新平臺(tái) GMate
    的頭像 發(fā)表于 11-18 19:42 ?323次閱讀

    《國(guó)際人工智能安全報(bào)告發(fā)布首份關(guān)鍵更新

    總體負(fù)責(zé),匯集了100多位國(guó)際專(zhuān)家,并得到30多個(gè)國(guó)家以及包括歐盟、經(jīng)合組織和聯(lián)合國(guó)在內(nèi)的國(guó)際組織的支持。 鑒于人工智能領(lǐng)域發(fā)展過(guò)于迅速,單一年度報(bào)告難以全面覆蓋,因此推出了《關(guān)鍵更新
    的頭像 發(fā)表于 10-17 04:20 ?336次閱讀

    2025人工智能十大趨勢(shì)

    在2025世界人工智能大會(huì)·騰訊論壇上,騰訊研究院聯(lián)合騰訊優(yōu)圖實(shí)驗(yàn)室、騰訊云智能、騰訊科技聯(lián)合發(fā)布了《共生伙伴:2025人工智能十大趨勢(shì)
    的頭像 發(fā)表于 08-05 11:42 ?5018次閱讀
    2025<b class='flag-5'>人工智能</b>十大<b class='flag-5'>趨勢(shì)</b>

    斯坦福(Stanford)鎖相放大器故障修復(fù)

    斯坦福鎖相放大器是由斯坦福研究系統(tǒng)公司(Stanford Research Systems, SRS)研發(fā)的一款測(cè)量工具,主要用于微弱信號(hào)的測(cè)量和提取。它結(jié)合了高靈敏度、高精度、高穩(wěn)定性和多功能性于一體,是科研和工業(yè)領(lǐng)域的重要設(shè)備。
    的頭像 發(fā)表于 07-30 10:58 ?681次閱讀
    <b class='flag-5'>斯坦福</b>(Stanford)鎖相放大器故障修復(fù)

    人工智能技術(shù)的現(xiàn)狀與未來(lái)發(fā)展趨勢(shì)

    人工智能技術(shù)的現(xiàn)狀與未來(lái)發(fā)展趨勢(shì) ? ? 近年來(lái),人工智能AI)技術(shù)迅猛發(fā)展,深刻影響著各行各
    的頭像 發(fā)表于 07-16 15:01 ?1234次閱讀

    詳解《斯坦福 AI 報(bào)告 2025》:國(guó)產(chǎn)模型崛起、清華論文領(lǐng)先

    斯坦福AI指數(shù)報(bào)告這是一份影響力很大的報(bào)告,每年一期。該報(bào)告旨在追蹤、整合、提煉并可視化與
    的頭像 發(fā)表于 04-17 18:05 ?1602次閱讀
    詳解《<b class='flag-5'>斯坦福</b> <b class='flag-5'>AI</b> <b class='flag-5'>報(bào)告</b> 2025》:國(guó)產(chǎn)模型崛起、清華論文領(lǐng)先

    斯坦福大學(xué)發(fā)布《2025 年人工智能指數(shù)報(bào)告

    2025年4月,斯坦福2025HAI報(bào)告重磅發(fā)布。由李飛飛聯(lián)合領(lǐng)導(dǎo)的斯坦福大學(xué)以人為本人工智能研究所(StanfordHAI)
    的頭像 發(fā)表于 04-11 11:08 ?1378次閱讀
    <b class='flag-5'>斯坦福</b>大學(xué)<b class='flag-5'>發(fā)布</b>《2025 年<b class='flag-5'>人工智能</b>指數(shù)<b class='flag-5'>報(bào)告</b>》

    Arm發(fā)布人工智能就緒指數(shù)報(bào)告

    人工智能 (AI) 已經(jīng)迅速?gòu)奈磥?lái)的概念蛻變?yōu)檠巯碌年P(guān)鍵商業(yè)工具。然而,面對(duì) AI 的無(wú)限可能,企業(yè)是否已經(jīng)做好充分準(zhǔn)備?為探索這一關(guān)鍵問(wèn)題,Arm 調(diào)研并發(fā)布了《
    的頭像 發(fā)表于 04-09 09:19 ?692次閱讀

    人工智能大模型年度發(fā)展趨勢(shì)報(bào)告

    2024年12月的中央經(jīng)濟(jì)工作會(huì)議明確把開(kāi)展“人工智能+”行動(dòng)作為2025年要抓好的重點(diǎn)任務(wù)。當(dāng)前,以大模型為代表的人工智能正快速演進(jìn),激發(fā)全球科技之變、產(chǎn)業(yè)之變、時(shí)代之變,人工智能
    的頭像 發(fā)表于 02-13 10:57 ?1528次閱讀
    <b class='flag-5'>人工智能</b>大模型年度<b class='flag-5'>發(fā)展趨勢(shì)</b><b class='flag-5'>報(bào)告</b>

    我國(guó)生成式人工智能發(fā)展現(xiàn)狀趨勢(shì)

    Intelligence,LI)時(shí)代,正在全面革新社會(huì)生產(chǎn)力。當(dāng)前,大語(yǔ)言模型成為現(xiàn)代人工智能的基石,構(gòu)筑起連接多模態(tài)的橋梁。2024年2月美國(guó)OpenAI發(fā)布的Sora,
    的頭像 發(fā)表于 02-08 11:31 ?2160次閱讀

    AI主導(dǎo)下科技領(lǐng)域的蓬勃發(fā)展與變革

    在科技飛速發(fā)展的當(dāng)下,未來(lái)科技走向一直備受關(guān)注。凱捷研究院發(fā)布的這部104頁(yè)《2025 年熱門(mén)科技趨勢(shì)人工智能驅(qū)動(dòng)一切》報(bào)告,基于對(duì)
    的頭像 發(fā)表于 01-23 13:58 ?1102次閱讀

    智能駕駛傳感器發(fā)展現(xiàn)狀發(fā)展趨勢(shì)

    的數(shù)據(jù)支持,從而實(shí)現(xiàn)安全、高效的自動(dòng)駕駛。本文將深入探討智能駕駛傳感器的發(fā)展現(xiàn)狀,并展望其未來(lái)的發(fā)展趨勢(shì)。 一、智能駕駛傳感器的發(fā)展現(xiàn)狀 1
    的頭像 發(fā)表于 01-16 17:02 ?1546次閱讀

    新型儲(chǔ)能產(chǎn)業(yè)發(fā)展現(xiàn)狀趨勢(shì)-2024年上半年數(shù)據(jù)發(fā)布簡(jiǎn)版

    新型儲(chǔ)能產(chǎn)業(yè)發(fā)展現(xiàn)狀趨勢(shì)-2024年上半年數(shù)據(jù)發(fā)布 簡(jiǎn)版
    發(fā)表于 01-03 15:14 ?0次下載

    斯坦福STANFORD FS725銣鐘

    斯坦福STANFORD FS725銣鐘 SRS斯坦福FS725 10MHzRb頻率標(biāo)準(zhǔn) ? SRS斯坦福FS72510MHzRb頻率標(biāo)準(zhǔn)FS725集成了一個(gè)銣振蕩器(SRS模型PRS10),一個(gè)
    的頭像 發(fā)表于 12-13 15:22 ?840次閱讀