chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)算法基本概念及選用指南

Dbwd_Imgtec ? 來源:cc ? 2019-01-15 15:55 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文對(duì)機(jī)器學(xué)習(xí)的一些基本概念給出了簡(jiǎn)要的介紹,并對(duì)不同任務(wù)中使用不同類型的機(jī)器學(xué)習(xí)算法給出一點(diǎn)建議。

在從事數(shù)據(jù)科學(xué)工作的時(shí)候,經(jīng)常會(huì)遇到為具體問題選擇最合適算法的問題。雖然有很多有關(guān)機(jī)器學(xué)習(xí)算法的文章詳細(xì)介紹了相關(guān)的算法,但要做出最合適的選擇依然非常困難。

在這篇文章中,我將對(duì)一些基本概念給出簡(jiǎn)要的介紹,對(duì)不同任務(wù)中使用不同類型的機(jī)器學(xué)習(xí)算法給出一點(diǎn)建議。在文章的最后,我將對(duì)這些算法進(jìn)行總結(jié)。

首先,你應(yīng)該能區(qū)分以下四種機(jī)器學(xué)習(xí)任務(wù):

監(jiān)督學(xué)習(xí)

無監(jiān)督學(xué)習(xí)

半監(jiān)督學(xué)習(xí)

強(qiáng)化學(xué)習(xí)

監(jiān)督學(xué)習(xí)

監(jiān)督學(xué)習(xí)是從標(biāo)記的訓(xùn)練數(shù)據(jù)中推斷出某個(gè)功能。通過擬合標(biāo)注的訓(xùn)練集,找到最優(yōu)的模型參數(shù)來預(yù)測(cè)其他對(duì)象(測(cè)試集)上的未知標(biāo)簽。如果標(biāo)簽是一個(gè)實(shí)數(shù),我們稱之為回歸。如果標(biāo)簽來自有限數(shù)量的值,這些值是無序的,那么稱之為分類。

無監(jiān)督學(xué)習(xí)

在無監(jiān)督學(xué)習(xí)中,我們對(duì)于物體知道的信息比較少,特別是訓(xùn)練集沒有做過標(biāo)記。那現(xiàn)在的目標(biāo)是什么呢?觀察對(duì)象之間的相似性,并將它們劃分到不同的群組中。某些對(duì)象可能與其他群組中的對(duì)象都有很大的區(qū)別,那么我們就認(rèn)為這些對(duì)象是異常的。

半監(jiān)督學(xué)習(xí)

半監(jiān)督學(xué)習(xí)包括了前面描述的兩個(gè)問題:同時(shí)使用標(biāo)記和未標(biāo)記的數(shù)據(jù)。對(duì)于那些無法標(biāo)注所有數(shù)據(jù)的人來說,這是一個(gè)很好的方法。該方法能夠顯著提高準(zhǔn)確性,因?yàn)樵谑褂糜?xùn)練集中未標(biāo)記數(shù)據(jù)的同時(shí),還能使用少量帶有標(biāo)記的數(shù)據(jù)。

強(qiáng)化學(xué)習(xí)

強(qiáng)化學(xué)習(xí)跟上面提到的方法不太一樣,因?yàn)樵谶@里并沒有標(biāo)記或未標(biāo)記的數(shù)據(jù)集。強(qiáng)化學(xué)習(xí)涉及到軟件代理應(yīng)該如何在某些環(huán)境中采取行動(dòng)來最大化累積獎(jiǎng)勵(lì)。

想象一下,你是一個(gè)在陌生環(huán)境中的機(jī)器人,你可以執(zhí)行一些動(dòng)作,并從中獲得獎(jiǎng)勵(lì)。在每執(zhí)行一個(gè)動(dòng)作之后,你的行為會(huì)變得越來越復(fù)雜越來越聰明,也就是說 ,你正在訓(xùn)練自己在執(zhí)行每一個(gè)動(dòng)作之后讓自己表現(xiàn)得更為有效。在生物學(xué)中,這被稱為適應(yīng)自然環(huán)境。

常用的機(jī)器學(xué)習(xí)算法

現(xiàn)在,我們對(duì)機(jī)器學(xué)習(xí)的類型有了一定的了解,下面,我們來看一下最流行的算法及其在現(xiàn)實(shí)生活中的應(yīng)用。

線性回歸和線性分類器

這些可能是機(jī)器學(xué)習(xí)中最簡(jiǎn)單的算法了。假設(shè)有對(duì)象(矩陣A)的特征x1,... xn和標(biāo)簽(向量B)。我們的目標(biāo)是根據(jù)某些損失函數(shù)(例如MSE或MAE)找到最優(yōu)權(quán)重w1,... wn和這些特征的偏差。 在使用MSE的情況下,有一個(gè)來自最小二乘法的數(shù)學(xué)公式:

在實(shí)踐中,使用梯度下降來進(jìn)行優(yōu)化則更為容易,計(jì)算上更有效率。盡管這個(gè)算法很簡(jiǎn)單,但是在存在成千上萬個(gè)特征的時(shí)候,這個(gè)方法依然能夠表現(xiàn)良好。更復(fù)雜的算法可能會(huì)遇到過擬合特征或者是沒有足夠大的數(shù)據(jù)集的問題,而線性回歸則是一個(gè)不錯(cuò)的選擇。

為了防止過擬合,可使用像lasso和ridge這樣的規(guī)則化技術(shù)。其主要思路是分別把權(quán)重總和以及權(quán)重平方的總和加到損失函數(shù)中。

邏輯回歸

邏輯回歸執(zhí)行的是二元分類,所以輸出的標(biāo)簽是二元的。給定輸入特征向量x,定義P(y=1|x)為輸出y等于1時(shí)的條件概率。系數(shù)w是模型要學(xué)習(xí)的權(quán)重。

由于該算法需要計(jì)算每個(gè)類別的歸屬概率,因此應(yīng)該考慮概率與0或1的差異程度,并像在線性回歸中一樣對(duì)所有對(duì)象取平均值。這種損失函數(shù)是交叉熵的平均值:

邏輯回歸有什么好處呢?它采用了線性組合的特征,并對(duì)其應(yīng)用非線性函數(shù)(sigmoid),所以它是一個(gè)非常小的神經(jīng)網(wǎng)絡(luò)實(shí)例!

決策樹

另一個(gè)比較流行、并且容易理解的算法是決策樹。它的圖形能讓你看到你自己的想法,它的引擎有一個(gè)系統(tǒng)的、有記錄的思考過程。

這個(gè)算法很簡(jiǎn)單。在每個(gè)節(jié)點(diǎn)中,我們選擇所有特征和所有可能的分割點(diǎn)之間的最佳分割。選擇每個(gè)分割以最大化某些功能。在分類樹中使用交叉熵和基尼指數(shù)。在回歸樹中,最小化該區(qū)域中的點(diǎn)的目標(biāo)值的預(yù)測(cè)變量與分配給它的點(diǎn)之間的平方誤差的總和。

算法會(huì)在每個(gè)節(jié)點(diǎn)上遞歸地完成這個(gè)過程,直到滿足停止條件為止。

K-means

有的時(shí)候你并不知道標(biāo)簽,而目標(biāo)是根據(jù)對(duì)象的特征來分配標(biāo)簽。這被稱為集聚化任務(wù)。

假設(shè)要把所有的數(shù)據(jù)對(duì)象分成k個(gè)簇,則需要從數(shù)據(jù)中隨機(jī)選擇k個(gè)點(diǎn),并將它們命名為簇的中心。其他對(duì)象的簇由最近的簇中心定義。然后,聚類的中心會(huì)被轉(zhuǎn)換并重復(fù)該過程直到收斂。

雖然這個(gè)技術(shù)非常不錯(cuò),但它仍然有一些缺點(diǎn)。首先,我們并不知道簇的數(shù)量。其次,結(jié)果依賴開始時(shí)隨機(jī)選擇的那個(gè)點(diǎn),算法無法保證我們能夠?qū)崿F(xiàn)功能的全局最小值。

主成分分析(PCA)

昨晚或者最近的幾個(gè)小時(shí)里你有沒有在準(zhǔn)備考試?你無法記住所有的信息,但是想要在可用的時(shí)間內(nèi)最大限度地記住信息,例如,首先學(xué)習(xí)考試中經(jīng)常出現(xiàn)的定理等等。

主成分分析基于類似的思想。該算法提供了降維的功能。有時(shí),你有很多的特征,并且彼此之間強(qiáng)相關(guān),模型可以很容易地適應(yīng)大量的數(shù)據(jù)。然后,你可以應(yīng)用PCA。

你應(yīng)該計(jì)算某些向量上的投影,以使數(shù)據(jù)的方差最大化,并盡可能少地丟失信息。而這些向量是來自數(shù)據(jù)集特征的相關(guān)矩陣的特征向量。

算法的內(nèi)容現(xiàn)在已經(jīng)很清楚了:

計(jì)算特征列的相關(guān)矩陣,找出該矩陣的特征向量。

將這些多維向量計(jì)算出來,并計(jì)算所有特征的投影。

新特征是投影中的坐標(biāo),其數(shù)量取決于投影的特征向量的數(shù)量。

神經(jīng)網(wǎng)絡(luò)

在上文講到邏輯回歸的時(shí)候,就已經(jīng)提到了神經(jīng)網(wǎng)絡(luò)。在一些具體的任務(wù)中,有很多不同的體系結(jié)構(gòu)都非常有價(jià)值。而神經(jīng)網(wǎng)絡(luò)更多的時(shí)候是一系列的層或組件,它們之間存在線性連接并遵循非線性。

如果你正在處理圖像,那么卷積深度神經(jīng)網(wǎng)絡(luò)能展現(xiàn)出不錯(cuò)的結(jié)果。而非線性則通過卷積層和匯聚層表現(xiàn)出來,它能夠捕捉圖像的特征。

要處理文本和序列,最好選擇遞歸神經(jīng)網(wǎng)絡(luò)。 RNN包含了LSTM或GRU模塊,并且能夠數(shù)據(jù)一同使用。也許,最有名的RNN應(yīng)用是機(jī)器翻譯吧。

結(jié)論

我希望能向大家解釋最常用的機(jī)器學(xué)習(xí)算法,并就針對(duì)具體問題如何選擇機(jī)器學(xué)習(xí)算法提供建議。為了能讓你更輕松的掌握這些內(nèi)容,我準(zhǔn)備了下面這個(gè)總結(jié)。

線性回歸和線性分類器。盡管看起來簡(jiǎn)單,但當(dāng)其他算法在大量特征上遇到過擬合的問題時(shí),它的優(yōu)勢(shì)就表現(xiàn)出來了。

Logistic回歸是最簡(jiǎn)單的非線性分類器,具有二元分類的參數(shù)和非線性函數(shù)(S形)的線性組合。

決策樹通常與人類的決策過程相似,并且易于解釋。但它們最常用于隨機(jī)森林或梯度增強(qiáng)這樣的組合中。

K-means是一個(gè)更原始、但又非常容易理解的算法。

PCA是降低信息損失最少的特征空間維度的絕佳選擇。

神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)算法的新武器,可以應(yīng)用于許多任務(wù),但其訓(xùn)練的計(jì)算復(fù)雜度相當(dāng)大。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:機(jī)器學(xué)習(xí)算法選用指南

文章出處:【微信號(hào):Imgtec,微信公眾號(hào):Imagination Tech】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    學(xué)習(xí)物聯(lián)網(wǎng)怎么入門?

    聯(lián)網(wǎng)的基本概念和技術(shù)是學(xué)習(xí)物聯(lián)網(wǎng)的重要第一步。物聯(lián)網(wǎng)是指互聯(lián)網(wǎng)上的物品相互連接,通過網(wǎng)絡(luò)實(shí)現(xiàn)信息交流和共享的一種技術(shù)。學(xué)習(xí)物聯(lián)網(wǎng)需要了解物聯(lián)網(wǎng)的基本概念,如物聯(lián)網(wǎng)的架構(gòu)、物聯(lián)網(wǎng)的協(xié)議、
    發(fā)表于 10-14 10:34

    第十三章 通訊的基本概念

    本章介紹通訊基本概念,包括串行/并行、全雙工/半雙工/單工、同步/異步通訊,還提及通訊速率中比特率與波特率的概念。
    的頭像 發(fā)表于 05-22 17:29 ?1530次閱讀
    第十三章 通訊的<b class='flag-5'>基本概念</b>

    進(jìn)群免費(fèi)領(lǐng)FPGA學(xué)習(xí)資料!數(shù)字信號(hào)處理、傅里葉變換與FPGA開發(fā)等

    譜估計(jì)。 03、數(shù)字信號(hào)處理,科學(xué)家與工程師指南(英文版) 數(shù)字信號(hào)處理入門資料,非常全面,清晰易懂。 04、數(shù)字信號(hào)處理的MATLAB實(shí)現(xiàn) 本書介紹了數(shù)字信號(hào)處理的基本概念、理論及其MATLAB實(shí)現(xiàn)
    發(fā)表于 04-07 16:41

    請(qǐng)問STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?

    STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?
    發(fā)表于 03-13 07:34

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)模型市場(chǎng)
    的頭像 發(fā)表于 02-13 09:39 ?513次閱讀

    人工智能和機(jī)器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    與人工智能相關(guān)各種技術(shù)的概念介紹,以及先進(jìn)的Edge AI(邊緣人工智能)的最新發(fā)展與相關(guān)應(yīng)用。 人工智能和機(jī)器學(xué)習(xí)是現(xiàn)代科技的核心技術(shù) 人工智能(AI)和機(jī)器
    的頭像 發(fā)表于 01-25 17:37 ?1356次閱讀
    人工智能和<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>以及Edge AI的<b class='flag-5'>概念</b>與應(yīng)用

    華為云 Flexus X 實(shí)例部署安裝 Jupyter Notebook,學(xué)習(xí) AI,機(jī)器學(xué)習(xí)算法

    前言 由于本人最近在學(xué)習(xí)一些機(jī)器算法,AI 算法的知識(shí),需要搭建一個(gè)學(xué)習(xí)環(huán)境,所以就在最近購買的華為云 Flexus X 實(shí)例上安裝了
    的頭像 發(fā)表于 01-02 13:43 ?737次閱讀
    華為云 Flexus X 實(shí)例部署安裝 Jupyter Notebook,<b class='flag-5'>學(xué)習(xí)</b> AI,<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法
    的頭像 發(fā)表于 12-30 09:16 ?1580次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    了解虛擬電廠的基本概念

    虛擬電廠的基本概念: 虛擬電廠是一種基于現(xiàn)代信息技術(shù)和能源互聯(lián)網(wǎng)的能源管理模式,它將分散的、可再生能源和儲(chǔ)能設(shè)備通過虛擬化技術(shù)進(jìn)行集成和管理,形成一個(gè)具有集中調(diào)度、統(tǒng)一運(yùn)營和優(yōu)化控制的虛擬化電力系統(tǒng)
    的頭像 發(fā)表于 12-24 17:12 ?1628次閱讀
    了解虛擬電廠的<b class='flag-5'>基本概念</b>

    自然語言處理與機(jī)器學(xué)習(xí)的關(guān)系 自然語言處理的基本概念及步驟

    Learning,簡(jiǎn)稱ML)是人工智能的一個(gè)核心領(lǐng)域,它使計(jì)算機(jī)能夠從數(shù)據(jù)中學(xué)習(xí)并做出預(yù)測(cè)或決策。自然語言處理與機(jī)器學(xué)習(xí)之間有著密切的關(guān)系,因?yàn)?b class='flag-5'>機(jī)器
    的頭像 發(fā)表于 12-05 15:21 ?2330次閱讀

    安森美半導(dǎo)體器件選用指南

    電子發(fā)燒友網(wǎng)站提供《安森美半導(dǎo)體器件選用指南.pdf》資料免費(fèi)下載
    發(fā)表于 11-18 17:00 ?0次下載

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    緊密。 NPU的起源與特點(diǎn) NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)項(xiàng)目中提出,旨在為TensorFlow框架提供專用的硬件加速。NPU的設(shè)計(jì)目標(biāo)是提高機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 11-15 09:19 ?1662次閱讀

    Linux應(yīng)用編程的基本概念

    Linux應(yīng)用編程涉及到在Linux環(huán)境下開發(fā)和運(yùn)行應(yīng)用程序的一系列概念。以下是一些涵蓋Linux應(yīng)用編程的基本概念。
    的頭像 發(fā)表于 10-24 17:19 ?863次閱讀

    X電容和Y電容的基本概念

    在電子電路中,電容器是一種至關(guān)重要的元件,它用于儲(chǔ)存電荷并在電路中釋放能量。而在眾多的電容器中,X電容和Y電容作為安規(guī)電容,因其特定的應(yīng)用場(chǎng)景和安全性能而受到廣泛關(guān)注。本文將對(duì)X電容和Y電容的基本概念、工作原理、應(yīng)用場(chǎng)景以及選擇和維護(hù)等方面進(jìn)行詳細(xì)介紹。
    的頭像 發(fā)表于 10-21 16:43 ?6846次閱讀

    諧波的概念及應(yīng)用

    本文簡(jiǎn)單介紹了諧波的概念及應(yīng)用。
    的頭像 發(fā)表于 10-18 14:14 ?1692次閱讀
    諧波的<b class='flag-5'>概念及</b>應(yīng)用