chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

微軟在ICML 2019上提出了一個全新的通用預(yù)訓(xùn)練方法MASS

DPVg_AI_era ? 來源:lq ? 2019-05-11 09:19 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

微軟亞洲研究院的研究員在 ICML 2019 上提出了一個全新的通用預(yù)訓(xùn)練方法 MASS,在序列到序列的自然語言生成任務(wù)中全面超越 BERT 和 GPT。本文帶來論文作者的技術(shù)解讀。

從 2018 年開始,預(yù)訓(xùn)練(pre-train) 毫無疑問成為 NLP 領(lǐng)域最熱的研究方向。

借助于 BERT 和 GPT 等預(yù)訓(xùn)練模型,人類在多個自然語言理解任務(wù)中取得了重大突破。然而,在序列到序列的自然語言生成任務(wù)中,目前主流預(yù)訓(xùn)練模型并沒有取得顯著效果。

為此,微軟亞洲研究院的研究員在 ICML 2019 上提出了一個全新的通用預(yù)訓(xùn)練方法 MASS,在序列到序列的自然語言生成任務(wù)中全面超越 BERT 和 GPT。在微軟參加的 WMT19 機器翻譯比賽中,MASS 幫助中 - 英、英 - 立陶宛兩個語言對取得了第一名的成績。

BERT 在自然語言理解(比如情感分類、自然語言推理、命名實體識別、SQuAD 閱讀理解等)任務(wù)中取得了很好的結(jié)果,受到了越來越多的關(guān)注。然而,在自然語言處理領(lǐng)域,除了自然語言理解任務(wù),還有很多序列到序列的自然語言生成任務(wù),比如機器翻譯、文本摘要生成、對話生成、問答、文本風(fēng)格轉(zhuǎn)換等。在這類任務(wù)中,目前主流的方法是編碼器 - 注意力 - 解碼器框架,如下圖所示。

編碼器 - 注意力 - 解碼器框架

編碼器(Encoder)將源序列文本 X 編碼成隱藏向量序列,然后解碼器(Decoder)通過注意力機制(Attention)抽取編碼的隱藏向量序列信息,自回歸地生成目標(biāo)序列文本 Y。

BERT 通常只訓(xùn)練一個編碼器用于自然語言理解,而 GPT 的語言模型通常是訓(xùn)練一個解碼器。如果要將 BERT 或者 GPT 用于序列到序列的自然語言生成任務(wù),通常只有分開預(yù)訓(xùn)練編碼器和解碼器,因此編碼器 - 注意力 - 解碼器結(jié)構(gòu)沒有被聯(lián)合訓(xùn)練,記憶力機制也不會被預(yù)訓(xùn)練,而解碼器對編碼器的注意力機制在這類任務(wù)中非常重要,因此 BERT 和 GPT 在這類任務(wù)中只能達到次優(yōu)效果。

新的預(yù)訓(xùn)練方法 ——MASS

專門針對序列到序列的自然語言生成任務(wù),微軟亞洲研究院提出了新的預(yù)訓(xùn)練方法:屏蔽序列到序列預(yù)訓(xùn)練(MASS: Masked Sequence to Sequence Pre-training)。MASS 對句子隨機屏蔽一個長度為 k 的連續(xù)片段,然后通過編碼器 - 注意力 - 解碼器模型預(yù)測生成該片段。

屏蔽序列到序列預(yù)訓(xùn)練 MASS 模型框架

如上圖所示,編碼器端的第 3-6 個詞被屏蔽掉,然后解碼器端只預(yù)測這幾個連續(xù)的詞,而屏蔽掉其它詞,圖中 “_” 代表被屏蔽的詞。

MASS 預(yù)訓(xùn)練有以下幾大優(yōu)勢:

(1)解碼器端其它詞(在編碼器端未被屏蔽掉的詞)都被屏蔽掉,以鼓勵解碼器從編碼器端提取信息來幫助連續(xù)片段的預(yù)測,這樣能促進編碼器 - 注意力 - 解碼器結(jié)構(gòu)的聯(lián)合訓(xùn)練;

(2)為了給解碼器提供更有用的信息,編碼器被強制去抽取未被屏蔽掉詞的語義,以提升編碼器理解源序列文本的能力;

(3)讓解碼器預(yù)測連續(xù)的序列片段,以提升解碼器的語言建模能力。

統(tǒng)一的預(yù)訓(xùn)練框架

MASS 有一個重要的超參數(shù) k(屏蔽的連續(xù)片段長度),通過調(diào)整 k 的大小,MASS 能包含 BERT 中的屏蔽語言模型訓(xùn)練方法以及 GPT 中標(biāo)準的語言模型預(yù)訓(xùn)練方法,使 MASS 成為一個通用的預(yù)訓(xùn)練框架。

當(dāng) k=1 時,根據(jù) MASS 的設(shè)定,編碼器端屏蔽一個單詞,解碼器端預(yù)測一個單詞,如下圖所示。解碼器端沒有任何輸入信息,這時 MASS 和 BERT 中的屏蔽語言模型的預(yù)訓(xùn)練方法等價。

當(dāng) k=m(m 為序列長度)時,根據(jù) MASS 的設(shè)定,編碼器屏蔽所有的單詞,解碼器預(yù)測所有單詞,如下圖所示,由于編碼器端所有詞都被屏蔽掉,解碼器的注意力機制相當(dāng)于沒有獲取到信息,在這種情況下 MASS 等價于 GPT 中的標(biāo)準語言模型。

MASS 在不同 K 下的概率形式如下表所示,其中 m 為序列長度,u 和 v 為屏蔽序列的開始和結(jié)束位置,x^u:v 表示從位置 u 到 v 的序列片段,x^\u:v 表示該序列從位置 u 到 v 被屏蔽掉??梢钥吹?,當(dāng)K=1 或者 m 時,MASS 的概率形式分別和 BERT 中的屏蔽語言模型以及 GPT 中的標(biāo)準語言模型一致。

我們通過實驗分析了屏蔽 MASS 模型中不同的片段長度(k)進行預(yù)訓(xùn)練的效果,如下圖所示。

當(dāng) k 取大約句子長度一半時(50% m),下游任務(wù)能達到最優(yōu)性能。屏蔽句子中一半的詞可以很好地平衡編碼器和解碼器的預(yù)訓(xùn)練,過度偏向編碼器(k=1,即 BERT)或者過度偏向解碼器(k=m,即 LM/GPT)都不能在該任務(wù)中取得最優(yōu)的效果,由此可以看出 MASS 在序列到序列的自然語言生成任務(wù)中的優(yōu)勢。

序列到序列自然語言生成任務(wù)實驗

預(yù)訓(xùn)練流程

MASS 只需要無監(jiān)督的單語數(shù)據(jù)(比如 WMT News Crawl Data、Wikipedia Data 等)進行預(yù)訓(xùn)練。MASS 支持跨語言的序列到序列生成(比如機器翻譯),也支持單語言的序列到序列生成(比如文本摘要生成、對話生成)。當(dāng)預(yù)訓(xùn)練 MASS 支持跨語言任務(wù)時(比如英語 - 法語機器翻譯),我們在一個模型里同時進行英語到英語以及法語到法語的預(yù)訓(xùn)練。需要單獨給每個語言加上相應(yīng)的語言嵌入向量,用來區(qū)分不同的語言。我們選取了無監(jiān)督機器翻譯、低資源機器翻譯、文本摘要生成以及對話生成四個任務(wù),將 MASS 預(yù)訓(xùn)練模型針對各個任務(wù)進行精調(diào),以驗證 MASS 的效果。

無監(jiān)督機器翻譯

在無監(jiān)督翻譯任務(wù)上,我們和當(dāng)前最強的 Facebook XLM 作比較(XLM 用 BERT 中的屏蔽預(yù)訓(xùn)練模型,以及標(biāo)準語言模型來分別預(yù)訓(xùn)練編碼器和解碼器),對比結(jié)果如下表所示。

可以看到,MASS 的預(yù)訓(xùn)練方法在 WMT14 英語 - 法語、WMT16 英語 - 德語一共 4 個翻譯方向上的表現(xiàn)都優(yōu)于 XLM。MASS 在英語 - 法語無監(jiān)督翻譯上的效果已經(jīng)遠超早期有監(jiān)督的編碼器 - 注意力 - 解碼器模型,同時極大縮小了和當(dāng)前最好的有監(jiān)督模型之間的差距。

低資源機器翻譯

低資源機器翻譯指的是監(jiān)督數(shù)據(jù)有限情況下的機器翻譯。我們在 WMT14 英語 - 法語、WMT16 英語 - 德語上的不同低資源場景上(分別只有 10K、100K、1M 的監(jiān)督數(shù)據(jù))驗證我們方法的有效性,結(jié)果如下所示。

在不同的數(shù)據(jù)規(guī)模下,我們的預(yù)訓(xùn)練方法的表現(xiàn)均比不用預(yù)訓(xùn)練的基線模型有不同程度的提升,監(jiān)督數(shù)據(jù)越少,提升效果越顯著。

文本摘要生成

在文本摘要生成(Gigaword Corpus)任務(wù)上,我們將 MASS 同 BERT+LM(編碼器用 BERT 預(yù)訓(xùn)練,解碼器用標(biāo)準語言模型 LM 預(yù)訓(xùn)練)以及 DAE(去噪自編碼器)進行了比較。從下表可以看到,MASS 的效果明顯優(yōu)于 BERT+LM 以及 DAE。

對話生成

在對話生成(Cornell Movie Dialog Corpus)任務(wù)上,我們將 MASS 同 BERT+LM 進行了比較,結(jié)果如下表所示。MASS 的 PPL 低于 BERT+LM。

在不同的序列到序列自然語言生成任務(wù)中,MASS 均取得了非常不錯的效果。接下來,我們還將測試 MASS 在自然語言理解任務(wù)上的性能,并為該模型增加支持監(jiān)督數(shù)據(jù)預(yù)訓(xùn)練的功能,以期望在更多自然語言任務(wù)中取得提升。未來,我們還希望將 MASS 的應(yīng)用領(lǐng)域擴展到包含語音、視頻等其它序列到序列的生成任務(wù)中。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 微軟
    +關(guān)注

    關(guān)注

    4

    文章

    6731

    瀏覽量

    107537
  • 編碼器
    +關(guān)注

    關(guān)注

    45

    文章

    3928

    瀏覽量

    141964
  • 自然語言
    +關(guān)注

    關(guān)注

    1

    文章

    292

    瀏覽量

    13953

原文標(biāo)題:【ICML 2019】微軟最新通用預(yù)訓(xùn)練模型MASS,超越BERT、GPT!

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    微軟全新AI超級工廠Fairwater亞特蘭大落成

    微軟正式發(fā)布位于美國喬治亞州亞特蘭大的 Azure AI 數(shù)據(jù)中心 Fairwater 站點。全新的數(shù)據(jù)中心將與威斯康星州的首個 Fairwater 站點、前幾代 AI 超級計算機以及全球 Azure 數(shù)據(jù)中心深度互聯(lián),共同構(gòu)建首個全球規(guī)模的 AI 超級工廠 Fairwa
    的頭像 發(fā)表于 12-09 17:31 ?654次閱讀

    喜報|華微軟件AI研發(fā)持續(xù)推進,再添項核心專利

    。 實際使用中,許多智能系統(tǒng)仍依賴用戶輸入固定指令(如“開燈”“查詢訂單”)才能執(zhí)行操作,定程度上限制了交互的靈活性,增加了使用負擔(dān)。而本項專利提出了種基于大語言模型的新型控制
    的頭像 發(fā)表于 11-27 15:02 ?107次閱讀
    喜報|華<b class='flag-5'>微軟</b>件AI研發(fā)持續(xù)推進,再添<b class='flag-5'>一</b>項核心專利

    Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的些經(jīng)驗

    本帖欲分享Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的些經(jīng)驗。我們采用jupyter notebook作為開發(fā)IDE,以TensorFlow2為訓(xùn)練框架,目標(biāo)是
    發(fā)表于 10-22 07:03

    微軟Visual Studio 2026 發(fā)布!AI 深度融合、性能提升

    與高效開發(fā)體驗。? ” ?? 微軟剛剛放出了重磅炸彈: Visual Studio 2026 Insiders 預(yù)覽版 ?已經(jīng)正式發(fā)布! 這是
    的頭像 發(fā)表于 09-16 11:17 ?1689次閱讀
    <b class='flag-5'>微軟</b>Visual Studio 2026 發(fā)布!AI 深度融合、性能提升

    基于大規(guī)模人類操作數(shù)據(jù)預(yù)訓(xùn)練的VLA模型H-RDT

    近年來,機器人操作領(lǐng)域的VLA模型普遍基于跨本體機器人數(shù)據(jù)集預(yù)訓(xùn)練,這類方法存在兩大局限:不同機器人本體和動作空間的差異導(dǎo)致統(tǒng)訓(xùn)練困難;現(xiàn)
    的頭像 發(fā)表于 08-21 09:56 ?938次閱讀
    基于大規(guī)模人類操作數(shù)據(jù)<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>的VLA模型H-RDT

    樹莓派5的Gemma 2:如何打造高效的邊緣AI解決方案?

    通用集成機器模型算法,第二版)是復(fù)雜的框架,專為可擴展和靈活的機器學(xué)習(xí)模型訓(xùn)練而設(shè)計,特別是分布式和資源受限的環(huán)境中。在其前身的基礎(chǔ)
    的頭像 發(fā)表于 06-20 16:57 ?1530次閱讀
    樹莓派5<b class='flag-5'>上</b>的Gemma 2:如何打造高效的邊緣AI解決方案?

    基于RK3576開發(fā)板的yolov11-track多目標(biāo)跟蹤部署教程

    YOLO11是 Ultralytics YOLO系列實時物體檢測器的最新版本,重新定義了尖端準確度、速度和效率方面的可能性。在前幾代 YOLO 版本的顯著進步基礎(chǔ),YOLO11 架構(gòu)和訓(xùn)
    的頭像 發(fā)表于 05-24 15:07 ?2374次閱讀
    基于RK3576開發(fā)板的yolov11-track多目標(biāo)跟蹤部署教程

    用PaddleNLP為GPT-2模型制作FineWeb二進制預(yù)訓(xùn)練數(shù)據(jù)集

    作者:算力魔方創(chuàng)始人/英特爾創(chuàng)新大使劉力 《用PaddleNLP4060單卡實踐大模型預(yù)訓(xùn)練技術(shù)》發(fā)布后收到讀者熱烈反響,很多讀者要求進
    的頭像 發(fā)表于 03-21 18:24 ?4060次閱讀
    用PaddleNLP為GPT-2模型制作FineWeb二進制<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>數(shù)據(jù)集

    從Open Model Zoo下載的FastSeg大型公共預(yù)訓(xùn)練模型,無法導(dǎo)入名稱是怎么回事?

    從 Open Model Zoo 下載的 FastSeg 大型公共預(yù)訓(xùn)練模型。 運行 converter.py 以將 FastSeg 大型模型轉(zhuǎn)換為中間表示 (IR): python3
    發(fā)表于 03-05 07:22

    華為公布AI模型訓(xùn)練與車輛控制專利

    顯示,該專利涉及全新的模型訓(xùn)練方法以及車輛控制方法,并配套有相關(guān)裝置,這些均可廣泛應(yīng)用于人工智能領(lǐng)域。具體而言,華為此次提出的創(chuàng)新點在于
    的頭像 發(fā)表于 02-20 09:14 ?803次閱讀

    微軟發(fā)布全新Windows 11 AI+ PC Surface商用版

    近日,微軟正式推出了全新的Windows 11 AI+ PC Surface商用版,為中國企業(yè)客戶帶來了更加智能、高效的辦公體驗。此次發(fā)布的Surface商用系列包括搭載最新英特爾?酷睿?Ultra
    的頭像 發(fā)表于 02-19 17:20 ?1267次閱讀

    用PaddleNLP4060單卡實踐大模型預(yù)訓(xùn)練技術(shù)

    作者:算力魔方創(chuàng)始人/英特爾創(chuàng)新大使劉力 之前我們分享了《從零開始訓(xùn)練大語言模型需要投資多少錢》,其中高昂的預(yù)訓(xùn)練費用讓許多對大模型
    的頭像 發(fā)表于 02-19 16:10 ?2279次閱讀
    用PaddleNLP<b class='flag-5'>在</b>4060單卡<b class='flag-5'>上</b>實踐大模型<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>技術(shù)

    DeepSeek推出NSA機制,加速長上下文訓(xùn)練與推理

    的特性,專為超快速的長上下文訓(xùn)練和推理而設(shè)計。 NSA通過針對現(xiàn)代硬件的優(yōu)化設(shè)計,顯著加快了推理速度,并大幅度降低了預(yù)訓(xùn)練成本,同時保持了卓越的性能表現(xiàn)。這機制
    的頭像 發(fā)表于 02-19 14:01 ?1045次閱讀

    大模型領(lǐng)域常用名詞解釋(近100

    本文總結(jié)了大模型領(lǐng)域常用的近100名詞解釋,并按照模型架構(gòu)與基礎(chǔ)概念,訓(xùn)練方法與技術(shù),模型優(yōu)化與壓縮,推理與應(yīng)用,計算與性能優(yōu)化,數(shù)據(jù)與標(biāo)簽,模型評估與調(diào)試,特征與數(shù)據(jù)處理,倫理與公平性、其他
    的頭像 發(fā)表于 02-19 11:49 ?1429次閱讀
    大模型領(lǐng)域常用名詞解釋(近100<b class='flag-5'>個</b>)

    騰訊公布大語言模型訓(xùn)練新專利

    近日,騰訊科技(深圳)有限公司公布了項名為“大語言模型的訓(xùn)練方法、裝置、計算機設(shè)備及存儲介質(zhì)”的新專利。該專利的公布,標(biāo)志著騰訊大語言模型訓(xùn)練領(lǐng)域取得了新的突破。 據(jù)專利摘要顯示,
    的頭像 發(fā)表于 02-10 09:37 ?820次閱讀