chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機器學(xué)習(xí) | autoML自動化深度學(xué)習(xí)網(wǎng)絡(luò)設(shè)計可行嗎?

MZjJ_DIGITIMES ? 來源:YXQ ? 2019-05-29 14:49 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

摘要:機器學(xué)習(xí)深度學(xué)習(xí)為其中一分支)技術(shù)成為各產(chǎn)業(yè)智慧化的核心能力,但是算法的設(shè)計復(fù)雜,需要專業(yè)知識與經(jīng)驗,對于好的人才,需求遠(yuǎn)大于供給。

機器學(xué)習(xí)(深度學(xué)習(xí)為其中一分支)技術(shù)成為各產(chǎn)業(yè)智慧化的核心能力,但是算法的設(shè)計復(fù)雜,需要專業(yè)知識與經(jīng)驗,對于好的人才,需求遠(yuǎn)大于供給。為了彌補這個空缺,這幾年自動化機器學(xué)習(xí)工具(autoML)新研究興起,希望有自動化的系統(tǒng),在給定問題(通常是標(biāo)記的數(shù)據(jù))之后可以自動生成機器(深度)學(xué)習(xí)算法。在信息論上,這是非常復(fù)雜的問題,需要大量運算資源,所以極具挑戰(zhàn)。

autoML研究已經(jīng)發(fā)展一段時間。例如開源軟件auto-sklearn,可以自動找出各種(傳統(tǒng)、較簡易)算法的組合,試著優(yōu)化整體預(yù)測能力,但目前僅局限于參數(shù)量較少的簡易模型。目前最受矚目的應(yīng)該是「神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜尋」(Neural Architecture Search; NAS),希望自動設(shè)計出解決特定問題的類神經(jīng)網(wǎng)絡(luò),原因是深度學(xué)習(xí)網(wǎng)絡(luò)的效能優(yōu)異,而且有機會在各平臺實現(xiàn),商業(yè)機會龐大。

NAS做為熱門的研究領(lǐng)域,其原則是在可能的神經(jīng)網(wǎng)絡(luò)設(shè)計架構(gòu)中找出最佳的組合。主要的結(jié)構(gòu)(參考附圖)包括3部分——可能網(wǎng)絡(luò)構(gòu)成空間、候選網(wǎng)絡(luò)生成(搜尋)策略、網(wǎng)絡(luò)效能評估策略等。

「可能的網(wǎng)絡(luò)構(gòu)成空間」是影響NAS能否收斂的關(guān)鍵因素。試想一下,目前常用的網(wǎng)絡(luò)參數(shù)量都是百萬、千萬等級,要組合出這些可能性,不可能在有限的時間、運算資源內(nèi)完成。所以目前的組合考慮大多限縮在某些特定、常用的網(wǎng)絡(luò)架構(gòu)(卷積層大小、normalization方式、pooling方法等),壓縮整體搜尋的空間。

另一個需要大量運算時間的是對每個找出的候選網(wǎng)絡(luò)進(jìn)行「效能評估」,進(jìn)而修正網(wǎng)絡(luò)生成的方向。開始時大家對這些候選網(wǎng)絡(luò)做最完整的參數(shù)訓(xùn)練,可以想象需要大量的時間資源,所以較早的研究曾經(jīng)使用到800個GPU、28天的時間。近來大家采用的策略都是減低訓(xùn)練數(shù)據(jù)、降低訓(xùn)練次數(shù)、共享網(wǎng)絡(luò)參數(shù),甚至是用推估的方式直接猜測效能,完全省略耗時的網(wǎng)絡(luò)訓(xùn)練。目前已經(jīng)可以大大降低所需的運算量。

「候選網(wǎng)絡(luò)生成」是為了搜尋出可能具有潛力的候選網(wǎng)絡(luò),還必須利用之前生成過的網(wǎng)絡(luò)效能來修正網(wǎng)絡(luò)生成(搜尋)的方式。所以傳統(tǒng)的演化式算法在這些優(yōu)化過程又需被大量使用,不過一般認(rèn)為最有效的方式是使用強化學(xué)習(xí)(reinforcement learning),按照之前生成網(wǎng)絡(luò)的評量,修正候選網(wǎng)絡(luò)的生成策略。 在實際的發(fā)展上,目前自動生成的網(wǎng)絡(luò),在某些實驗數(shù)據(jù)集上已可超越資深研究人員的手工設(shè)計。但這也不令人意外,因其是利用大量運算資源來更優(yōu)化設(shè)計效能。此外,NAS算法只能在研究人員認(rèn)為有效以及給定的網(wǎng)絡(luò)組件組合中搜尋,尚未有「創(chuàng)造」新組件的能力。

以企業(yè)的角度,我認(rèn)為autoML該視為輔助性的工具來加速深度學(xué)習(xí)網(wǎng)絡(luò)的設(shè)計。但是主要架構(gòu)的獨特性、競爭性,或是能否在垂直領(lǐng)域中勝出,還是需要了解該領(lǐng)域的資深研究人員給出適合的基本結(jié)構(gòu),讓autoML算法找出最神經(jīng)網(wǎng)絡(luò)。

目前應(yīng)用上,除了優(yōu)化正確率之外,基于許多場域的實際考慮,我們也會將速度、參數(shù)量、耗電量、平臺目標(biāo)(行動、工作站、嵌入系統(tǒng)等)、內(nèi)存大小等當(dāng)作多個優(yōu)化的標(biāo)準(zhǔn)。所以autoML可以加速智慧技術(shù)的落地。

autoML的興起,對產(chǎn)業(yè)界(或個人職涯)傳遞怎樣的訊息呢?相關(guān)自動化技術(shù)絕對會優(yōu)化、縮短智慧算法研發(fā),但是頂尖的智慧研發(fā)人員依舊無法取代。他們與autoML相互搭配,會是最有效率的研發(fā)程序。但是對于補習(xí)式教育訓(xùn)練出的的機器學(xué)習(xí)工程師,很可能會被autoML取代。此外,這些工具也會被其他競爭公司使用,能讓公司產(chǎn)生差異的還是對前瞻技術(shù)的提早投入,以及對于機器學(xué)習(xí)領(lǐng)域的通盤(或是特殊領(lǐng)域的深度)了解,或是將深度學(xué)習(xí)技術(shù)結(jié)合跨領(lǐng)域(如醫(yī)學(xué)、金融、安全等)應(yīng)用。淺碟型的技術(shù)投資,對公司(或職業(yè)生涯)長期的發(fā)展性都不大!

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標(biāo)題:【智慧城市】autoML自動化深度學(xué)習(xí)網(wǎng)絡(luò)設(shè)計可行嗎?

文章出處:【微信號:DIGITIMES,微信公眾號:DIGITIMES】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    【團(tuán)購】獨家全套珍藏!龍哥LabVIEW視覺深度學(xué)習(xí)實戰(zhàn)課(11大系列課程,共5000+分鐘)

    (第10系列)、YOLOv8-Tiny工業(yè)優(yōu)化版(第9系列),滿足產(chǎn)線端設(shè)備算力限制,模型推理速度提升300%。 LabVIEW生態(tài)整合 作為工業(yè)自動化領(lǐng)域主流開發(fā)環(huán)境,LabVIEW與深度學(xué)習(xí)的集成
    發(fā)表于 12-04 09:28

    【團(tuán)購】獨家全套珍藏!龍哥LabVIEW視覺深度學(xué)習(xí)實戰(zhàn)可(11大系列課程,共5000+分鐘)

    講師,使用LabVIEW開發(fā)了大量視覺檢測、運動控制、數(shù)據(jù)采集方面軟件,具有豐富的非標(biāo)自動化設(shè)備經(jīng)驗。精通LabVIEW、Halcon、深度學(xué)習(xí)算法部署,擅長將復(fù)雜技術(shù)轉(zhuǎn)化為實戰(zhàn)課程。授權(quán)16項
    發(fā)表于 12-03 13:50

    如何深度學(xué)習(xí)機器視覺的應(yīng)用場景

    深度學(xué)習(xí)視覺應(yīng)用場景大全 工業(yè)制造領(lǐng)域 復(fù)雜缺陷檢測:處理傳統(tǒng)算法難以描述的非標(biāo)準(zhǔn)缺陷模式 非標(biāo)產(chǎn)品分類:對形狀、顏色、紋理多變的產(chǎn)品進(jìn)行智能分類 外觀質(zhì)量評估:基于學(xué)習(xí)的外觀質(zhì)量標(biāo)
    的頭像 發(fā)表于 11-27 10:19 ?63次閱讀

    如何在機器視覺中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    人士而言往往難以理解,人們也常常誤以為需要扎實的編程技能才能真正掌握并合理使用這項技術(shù)。事實上,這種印象忽視了該技術(shù)為機器視覺(乃至生產(chǎn)自動化)帶來的潛力,因為深度學(xué)習(xí)并非只屬于計算機
    的頭像 發(fā)表于 09-10 17:38 ?713次閱讀
    如何在<b class='flag-5'>機器</b>視覺中部署<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>神經(jīng)<b class='flag-5'>網(wǎng)絡(luò)</b>

    深度學(xué)習(xí)對工業(yè)物聯(lián)網(wǎng)有哪些幫助

    深度學(xué)習(xí)作為人工智能的核心分支,通過模擬人腦神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu),能夠自動從海量工業(yè)數(shù)據(jù)中提取復(fù)雜特征,為工業(yè)物聯(lián)網(wǎng)(IIoT)提供了從數(shù)據(jù)感知到智能決策的全鏈路升級能力。以下從技術(shù)賦能
    的頭像 發(fā)表于 08-20 14:56 ?778次閱讀

    自動駕駛中Transformer大模型會取代深度學(xué)習(xí)嗎?

    持續(xù)討論。特別是在自動駕駛領(lǐng)域,部分廠商開始嘗試將多模態(tài)大模型(MLLM)引入到感知、規(guī)劃與決策系統(tǒng),引發(fā)了“傳統(tǒng)深度學(xué)習(xí)是否已過時”的激烈爭論。然而,從技術(shù)原理、算力成本、安全需求與實際落地路徑等維度來看,Transforme
    的頭像 發(fā)表于 08-13 09:15 ?3934次閱讀
    <b class='flag-5'>自動</b>駕駛中Transformer大模型會取代<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>嗎?

    機器人和自動化的未來(2)

    本文是第二屆電力電子科普征文大賽的獲獎作品,來自西南交通大學(xué)黃雯珂的投稿。3機器人與自動化的未來展望隨著機器人和自動化技術(shù)的不斷進(jìn)步,未來的世界將會是一個高度
    的頭像 發(fā)表于 04-26 08:33 ?602次閱讀
    <b class='flag-5'>機器</b>人和<b class='flag-5'>自動化</b>的未來(2)

    嵌入式AI技術(shù)之深度學(xué)習(xí):數(shù)據(jù)樣本預(yù)處理過程中使用合適的特征變換對深度學(xué)習(xí)的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實現(xiàn)機器學(xué)習(xí)網(wǎng)絡(luò)的每個層都將對輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成
    的頭像 發(fā)表于 04-02 18:21 ?1295次閱讀

    行業(yè)首創(chuàng):基于深度學(xué)習(xí)視覺平臺的AI驅(qū)動輪胎檢測自動化

    全球領(lǐng)先的輪胎制造商 NEXEN TIRE 在其輪胎生產(chǎn)檢測過程中使用了基于友思特伙伴Neurocle開發(fā)的AI深度學(xué)習(xí)視覺平臺,實現(xiàn)缺陷檢測率高達(dá)99.96%,是該行業(yè)首個使用AI平臺技術(shù)推動缺陷檢測自動化流程的企業(yè)。
    的頭像 發(fā)表于 03-19 16:51 ?791次閱讀
    行業(yè)首創(chuàng):基于<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>視覺平臺的AI驅(qū)動輪胎檢測<b class='flag-5'>自動化</b>

    SLAMTEC Aurora:把深度學(xué)習(xí)“卷”進(jìn)機器人日常

    在人工智能和機器人技術(shù)飛速發(fā)展的今天,深度學(xué)習(xí)與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領(lǐng)著智能機器人行業(yè)邁向新的高度。最近科技圈頂流DeepSeek簡直殺瘋了!靠著逆天的
    的頭像 發(fā)表于 02-19 15:49 ?731次閱讀

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機遇

    ,并廣泛介紹了深度學(xué)習(xí)在兩個主要軍事應(yīng)用領(lǐng)域的應(yīng)用:情報行動和自主平臺。最后,討論了相關(guān)的威脅、機遇、技術(shù)和實際困難。主要發(fā)現(xiàn)是,人工智能技術(shù)并非無所不能,需要謹(jǐn)慎應(yīng)用,同時考慮到其局限性、網(wǎng)絡(luò)安全威脅以及
    的頭像 發(fā)表于 02-14 11:15 ?828次閱讀

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小
    的頭像 發(fā)表于 02-12 15:15 ?1364次閱讀

    全球的AI+EDA(電子設(shè)計自動化)創(chuàng)新項目

    for EDA 項目概述 :Google研究團(tuán)隊推出了AutoML自動化機器學(xué)習(xí))平臺,應(yīng)用于電子設(shè)計自動化領(lǐng)域。該平臺利用AI來
    的頭像 發(fā)表于 02-07 12:00 ?3847次閱讀

    AI自動化生產(chǎn):深度學(xué)習(xí)在質(zhì)量控制中的應(yīng)用

    隨著科技的飛速發(fā)展,人工智能(AI)與深度學(xué)習(xí)技術(shù)正逐步滲透到各個行業(yè),特別是在自動化生產(chǎn)中,其潛力與價值愈發(fā)凸顯。深度學(xué)習(xí)軟件不僅使人工和
    的頭像 發(fā)表于 01-17 16:35 ?1227次閱讀
    AI<b class='flag-5'>自動化</b>生產(chǎn):<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>在質(zhì)量控制中的應(yīng)用

    傳統(tǒng)機器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開發(fā)生物學(xué)數(shù)據(jù)的機器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個強大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與
    的頭像 發(fā)表于 12-30 09:16 ?1986次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)