chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度學(xué)習(xí)模型壓縮與加速綜述

Dbwd_Imgtec ? 來源:yxw ? 2019-06-08 17:26 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

目前在深度學(xué)習(xí)領(lǐng)域分類兩個派別,一派為學(xué)院派,研究強大、復(fù)雜的模型網(wǎng)絡(luò)和實驗方法,為了追求更高的性能;另一派為工程派,旨在將算法更穩(wěn)定、高效的落地在硬件平臺上,效率是其追求的目標(biāo)。復(fù)雜的模型固然具有更好的性能,但是高額的存儲空間、計算資源消耗是使其難以有效的應(yīng)用在各硬件平臺上的重要原因。所以,卷積神經(jīng)網(wǎng)絡(luò)日益增長的深度和尺寸為深度學(xué)習(xí)在移動端的部署帶來了巨大的挑戰(zhàn),深度學(xué)習(xí)模型壓縮與加速成為了學(xué)術(shù)界和工業(yè)界都重點關(guān)注的研究領(lǐng)域之一。本文主要介紹深度學(xué)習(xí)模型壓縮和加速算法的三個方向,分別為加速網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計、模型裁剪與稀疏化、量化加速。

I. 加速網(wǎng)絡(luò)設(shè)計

分組卷積

分組卷積即將輸入的feature maps分成不同的組(沿channel維度進(jìn)行分組),然后對不同的組分別進(jìn)行卷積操作,即每一個卷積核至于輸入的feature maps的其中一組進(jìn)行連接,而普通的卷積操作是與所有的feature maps進(jìn)行連接計算。分組數(shù)k越多,卷積操作的總參數(shù)量和總計算量就越少(減少k倍)。然而分組卷積有一個致命的缺點就是不同分組的通道間減少了信息流通,即輸出的feature maps只考慮了輸入特征的部分信息,因此在實際應(yīng)用的時候會在分組卷積之后進(jìn)行信息融合操作,接下來主要講兩個比較經(jīng)典的結(jié)構(gòu),ShuffleNet[1]和MobileNet[2]結(jié)構(gòu)。

1) ShuffleNet結(jié)構(gòu):

如上圖所示,圖a是一般的group convolution的實現(xiàn)效果,其造成的問題是,輸出通道只和輸入的某些通道有關(guān),導(dǎo)致全局信息 流通不暢,網(wǎng)絡(luò)表達(dá)能力不足。圖b就是shufflenet結(jié)構(gòu),即通過均勻排列,把group convolution后的feature map按通道進(jìn)行均勻混合,這樣就可以更好的獲取全局信息了。圖c是操作后的等價效果圖。在分組卷積的時候,每一個卷積核操作的通道數(shù)減少,所以可以大量減少計算量。

2)MobileNet結(jié)構(gòu):

如上圖所示,mobilenet采用了depthwise separable convolutions的思想,采用depthwise (或叫channelwise)和1x1 pointwise的方法進(jìn)行分解卷積。其中depthwise separable convolutions即對每一個通道進(jìn)行卷積操作,可以看成是每組只有一個通道的分組卷積,最后使用開銷較小的1x1卷積進(jìn)行通道融合,可以大大減少計算量。

分解卷積

分解卷積,即將普通的kxk卷積分解為kx1和1xk卷積,通過這種方式可以在感受野相同的時候大量減少計算量,同時也減少了參數(shù)量,在某種程度上可以看成是使用2k個參數(shù)模擬k*k個參數(shù)的卷積效果,從而造成網(wǎng)絡(luò)的容量減小,但是可以在較少損失精度的前提下,達(dá)到網(wǎng)絡(luò)加速的效果。

右圖是在圖像語義分割任務(wù)上取得非常好的效果的ERFNet[3]的主要模塊,稱為NonBottleNeck結(jié)構(gòu)借鑒自ResNet[4]中的Non-Bottleneck結(jié)構(gòu),相應(yīng)改進(jìn)為使用分解卷積替換標(biāo)準(zhǔn)卷積,這樣可以減少一定的參數(shù)和計算量,使網(wǎng)絡(luò)更趨近于efficiency。

Bottleneck結(jié)構(gòu)

右圖為ENet[5]中的Bottleneck結(jié)構(gòu),借鑒自ResNet中的Bottleneck結(jié)構(gòu),主要是通過1x1卷積進(jìn)行降維和升維,能在一定程度上能夠減少計算量和參數(shù)量。其中1x1卷積操作的參數(shù)量和計算量少,使用其進(jìn)行網(wǎng)絡(luò)的降維和升維操作(減少或者增加通道數(shù))的開銷比較小,從而能夠達(dá)到網(wǎng)絡(luò)加速的目的。

C.ReLU[7]結(jié)構(gòu)

C.ReLU來源于CNNs中間激活模式引發(fā)的。輸出節(jié)點傾向于是"配對的",一個節(jié)點激活是另一個節(jié)點的相反面,即其中一半通道的特征是可以通過另外一半通道的特征生成的。根據(jù)這個觀察,C.ReLU減少一半輸出通道(output channels)的數(shù)量,然后通過其中一半通道的特征生成另一半特征,這里使用 negation使其變成雙倍,最后通過scale操作使得每個channel(通道)的斜率和激活閾值與其相反的channel不同。

SqueezeNet[8]結(jié)構(gòu)

SqueezeNet思想非常簡單,就是將原來簡單的一層conv層變成兩層:squeeze層+expand層,各自帶上Relu激活層。在squeeze層里面全是1x1的卷積kernel,數(shù)量記為S11;在expand層里面有1x1和3x3的卷積kernel,數(shù)量分別記為E11和E33,要求S11 < input map number。expand層之后將 1x1和3x3的卷積output feature maps在channel維度拼接起來。

神經(jīng)網(wǎng)絡(luò)搜索[18]

神經(jīng)結(jié)構(gòu)搜索(Neural Architecture Search,簡稱NAS)是一種自動設(shè)計神經(jīng)網(wǎng)絡(luò)的技術(shù),可以通過算法根據(jù)樣本集自動設(shè)計出高性能的網(wǎng)絡(luò)結(jié)構(gòu),在某些任務(wù)上甚至可以媲美人類專家的水準(zhǔn),甚至發(fā)現(xiàn)某些人類之前未曾提出的網(wǎng)絡(luò)結(jié)構(gòu),這可以有效的降低神經(jīng)網(wǎng)絡(luò)的使用和實現(xiàn)成本。

NAS的原理是給定一個稱為搜索空間的候選神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)集合,用某種策略從中搜索出最優(yōu)網(wǎng)絡(luò)結(jié)構(gòu)。神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的優(yōu)劣即性能用某些指標(biāo)如精度、速度來度量,稱為性能評估,可以通過NAS自動搜索出高效率的網(wǎng)絡(luò)結(jié)構(gòu)。

本節(jié)主要介紹了模型模型設(shè)計的思路,同時對模型的加速設(shè)計以及相關(guān)缺陷進(jìn)行分析。總的來說,加速網(wǎng)絡(luò)模型設(shè)計主要是探索最優(yōu)的網(wǎng)絡(luò)結(jié)構(gòu),使得較少的參數(shù)量和計算量就能達(dá)到類似的效果。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3644

    瀏覽量

    51684
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5589

    瀏覽量

    123881

原文標(biāo)題:深度學(xué)習(xí)模型壓縮與加速綜述

文章出處:【微信號:Imgtec,微信公眾號:Imagination Tech】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    如何利用NPU與模型壓縮技術(shù)優(yōu)化邊緣AI

    ,AI 模型體積龐大,部署在 NPU上常常面臨困難,這凸顯了模型壓縮技術(shù)的重要性。要實現(xiàn)高效的實時邊緣 AI,需要深入探討NPU 與模型壓縮
    的頭像 發(fā)表于 11-07 15:26 ?1022次閱讀
    如何利用NPU與<b class='flag-5'>模型</b><b class='flag-5'>壓縮</b>技術(shù)優(yōu)化邊緣AI

    【「AI芯片:科技探索與AGI愿景」閱讀體驗】+第二章 實現(xiàn)深度學(xué)習(xí)AI芯片的創(chuàng)新方法與架構(gòu)

    、Transformer 模型的后繼者 二、用創(chuàng)新方法實現(xiàn)深度學(xué)習(xí)AI芯片 1、基于開源RISC-V的AI加速器 RISC-V是一種開源、模塊化的指令集架構(gòu)(ISA)。優(yōu)勢如下: ①模
    發(fā)表于 09-12 17:30

    Andes晶心科技推出新一代深度學(xué)習(xí)加速

    高效能、低功耗 32/64 位 RISC-V 處理器核與 AI 加速解決方案的領(lǐng)導(dǎo)供貨商—Andes晶心科技(Andes Technology)今日正式發(fā)表最新深度學(xué)習(xí)加速器 Ande
    的頭像 發(fā)表于 08-20 17:43 ?1781次閱讀

    自動駕駛中Transformer大模型會取代深度學(xué)習(xí)嗎?

    [首發(fā)于智駕最前沿微信公眾號]近年來,隨著ChatGPT、Claude、文心一言等大語言模型在生成文本、對話交互等領(lǐng)域的驚艷表現(xiàn),“Transformer架構(gòu)是否正在取代傳統(tǒng)深度學(xué)習(xí)”這一話題一直被
    的頭像 發(fā)表于 08-13 09:15 ?3894次閱讀
    自動駕駛中Transformer大<b class='flag-5'>模型</b>會取代<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>嗎?

    基于FPGA的壓縮算法加速實現(xiàn)

    本設(shè)計中,計劃實現(xiàn)對文件的壓縮及解壓,同時優(yōu)化壓縮中所涉及的信號處理和計算密集型功能,實現(xiàn)對其的加速處理。本設(shè)計的最終目標(biāo)是證明在充分并行化的硬件體系結(jié)構(gòu) FPGA 上實現(xiàn)該算法時,可以大大提高該算
    的頭像 發(fā)表于 07-10 11:09 ?2057次閱讀
    基于FPGA的<b class='flag-5'>壓縮</b>算法<b class='flag-5'>加速</b>實現(xiàn)

    模型推理顯存和計算量估計方法研究

    ,如乘法、加法等; (2)根據(jù)各層計算操作的類型和復(fù)雜度,確定每層所需的計算量; (3)將各層計算量相加,得到模型總的計算量。 基于硬件加速的算力估計 隨著硬件加速技術(shù)的發(fā)展,許多深度
    發(fā)表于 07-03 19:43

    模型時代的深度學(xué)習(xí)框架

    量是約為 25.63M,在ImageNet1K數(shù)據(jù)集上,使用單張消費類顯卡 RTX-4090只需大約35~40個小時 ,即可完成ResNet50模型的預(yù)訓(xùn)練。在 大模型時代 ,由于大模型參數(shù)規(guī)模龐大,無法跟CNN時代的小
    的頭像 發(fā)表于 04-25 11:43 ?639次閱讀
    大<b class='flag-5'>模型</b>時代的<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>框架

    用樹莓派搞深度學(xué)習(xí)?TensorFlow啟動!

    介紹本頁面將指導(dǎo)您在搭載64位Bullseye操作系統(tǒng)的RaspberryPi4上安裝TensorFlow。TensorFlow是一個專為深度學(xué)習(xí)開發(fā)的大型軟件庫,它消耗大量資源。您可以在
    的頭像 發(fā)表于 03-25 09:33 ?929次閱讀
    用樹莓派搞<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>?TensorFlow啟動!

    在OpenVINO?工具套件的深度學(xué)習(xí)工作臺中無法導(dǎo)出INT8模型怎么解決?

    無法在 OpenVINO? 工具套件的深度學(xué)習(xí) (DL) 工作臺中導(dǎo)出 INT8 模型
    發(fā)表于 03-06 07:54

    模型領(lǐng)域常用名詞解釋(近100個)

    的分類進(jìn)行了整理,以下供參考:模型架構(gòu)與基礎(chǔ)概念大語言模型(LLM,LargeLanguageModel):一種基于深度學(xué)習(xí)的大規(guī)模神經(jīng)網(wǎng)絡(luò)模型
    的頭像 發(fā)表于 02-19 11:49 ?1260次閱讀
    大<b class='flag-5'>模型</b>領(lǐng)域常用名詞解釋(近100個)

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢,導(dǎo)致戰(zhàn)爭形式和模式發(fā)生重大變
    的頭像 發(fā)表于 02-14 11:15 ?810次閱讀

    LZO Data Compression,高性能LZO無損數(shù)據(jù)壓縮加速器介紹,F(xiàn)PGA&amp;ASIC

    可以通過軟件模型分析處理速度和壓縮率,方便地為特定的系統(tǒng)取得最好的速率和效率之間的權(quán)衡。LZOAccel-C采用AMBA AXI4-Stream數(shù)據(jù)接口,非常易于被使用和集成。LZOAccel-C可以
    發(fā)表于 01-24 23:53

    【「基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化」閱讀體驗】+大模型微調(diào)技術(shù)解讀

    今天學(xué)習(xí)<基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化>這本書。大模型微調(diào)是深度學(xué)習(xí)領(lǐng)域中的一項關(guān)鍵技術(shù),它指的是在已經(jīng)預(yù)訓(xùn)練好的大型
    發(fā)表于 01-14 16:51

    Triton編譯器在機器學(xué)習(xí)中的應(yīng)用

    1. Triton編譯器概述 Triton編譯器是NVIDIA Triton推理服務(wù)平臺的一部分,它負(fù)責(zé)將深度學(xué)習(xí)模型轉(zhuǎn)換為優(yōu)化的格式,以便在NVIDIA GPU上高效運行。Triton編譯器支持
    的頭像 發(fā)表于 12-24 18:13 ?1602次閱讀

    Flexus X 實例 ultralytics 模型 yolov10 深度學(xué)習(xí) AI 部署與應(yīng)用

    前言: ???深度學(xué)習(xí)新紀(jì)元,828 B2B 企業(yè)節(jié) Flexus X 實例特惠!想要高效訓(xùn)練 YOLOv10 模型,實現(xiàn)精準(zhǔn)圖像識別?Flexus X 以卓越算力,助您輕松駕馭大規(guī)模數(shù)據(jù)集,
    的頭像 發(fā)表于 12-24 12:24 ?1279次閱讀
    Flexus X 實例 ultralytics <b class='flag-5'>模型</b> yolov10 <b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b> AI 部署與應(yīng)用