機器學習模型指標在機器學習建模過程中,針對不同的問題,需采用不同的模型評估指標。
2023-09-06 12:51:50
2090 
在這篇文章中,我將逐步講解如何使用 TensorFlow 創(chuàng)建一個簡單的機器學習模型。
2024-01-08 09:25:34
1667 
機器學習:偏差、方差,生成模型,判別模型,先驗概率,后驗概率
2020-05-14 15:23:39
機器學習模型的性能度量
2020-05-12 10:27:21
機器學習(李航統計學方法)之KNN
2020-04-07 16:20:24
機器學習與數據挖掘方法和應用(經典)
2023-09-26 07:56:49
本書將機器學習看成一個整體,不管于基于頻率的方法還是貝葉斯方法,不管是回歸模型還是分類模型,都只是一個問題的不同側面。作者能夠開啟上帝視角,將機器學習的林林總總都納入一張巨網之中
2019-03-18 08:30:00
機器學習:高級算法課程學習總結
2020-05-05 17:17:16
機器學習小白第一周自我總結
2020-07-08 08:27:34
系列文章目錄提示:這里可以添加系列文章的所有文章的目錄,目錄需要自己手動添加例如:第一章 Python 機器學習入門之pandas的使用提示:寫完文章后,目錄可以自動生成,如何生成可參考右邊的幫助
2022-02-09 06:47:38
經典機器學習算法介紹章節(jié)目標:機器學習是人工智能的重要技術之一,詳細了解機器學習的原理、機制和方法,為學習深度學習與遷移學習打下堅實的基礎。二、深度學習簡介與經典網絡結構介紹神經網絡簡介神經網絡組件簡介
2022-04-28 18:56:07
系列文章目錄提示:這里可以添加系列文章的所有文章的目錄,目錄需要自己手動添加例如:第一章 Python 機器學習入門之pandas的使用提示:寫完文章后,目錄可以自動生成,如何生成可參考右邊的幫助
2021-08-13 07:36:45
分布和模型收斂的診斷工具,也包含一些層次模型。四、GensimGensim被稱為“人們的主題建模工具”,其焦點是狄利克雷劃分及變體,其支持自然語言處理,能將NLP和其他機器學習算法更容易組合在一起,還
2018-03-26 16:29:41
醫(yī)療領域,手術輔助機器人需要毫米級的精確控制,書中有介紹基于視覺伺服的實時控制算法,以及如何利用大模型優(yōu)化手術路徑規(guī)劃。工業(yè)場景中,協作機器人面臨的主要挑戰(zhàn)是快速適應新工藝流程。具身智能通過在線學習
2024-12-24 15:03:54
章節(jié)介紹了機器學習,從方法論上來看,機器學習屬于歸納推理;從開發(fā)設計方式來看,機器學習屬于自動編程。我們平時使用各種計算機高級語言編寫程序代碼,這屬于人工編程的范疇;機器學習則由算法自動產生程序,因此
2024-07-25 14:33:23
一些局限性。例如,模型可能無法完全理解文本中的深層含義和語境信息;同時,由于訓練數據可能存在偏差和噪聲,生成的答案也可能存在不準確或誤導性的情況。
總結以下,大語言模型通過深度學習和自然語言處理技術
2024-08-02 11:03:41
讀者, 本書附錄給出了一些相關數學基礎知識簡介.目錄:全書共16 章,大致分為3 個部分:第1 部分(第1~3 章)介紹機器學習的基礎知識;第2 部分(第4~10 章)討論一些經典而常用的機器學習方法
2017-06-01 15:49:24
機器學習的流程總結出來就是,我們先要設計一個模型,然后定義一個評價指標稱之為損失函數,這樣我們就知道怎么去判斷模型的好壞,接下來就是用一種訓練方法,讓模型參數能朝著能讓損失函數減少的方向運動,當損失函數
2019-09-23 07:00:00
:用來訓練,構建模型。驗證集:在模型訓練階段測試模型的好壞。測試集:等模型訓練好后,評估模型的好壞。學習方式:監(jiān)督學習:訓練帶有標簽的數據集。無監(jiān)督學習:訓練無標簽的數據集。半監(jiān)...
2021-09-06 08:21:17
的、面向任務的智能,這就是機器學習的范疇。我過去聽到的機器學習定義的最強大的方法之一是與傳統的、用于經典計算機編程的算法方法相比較。在經典計算中,工程師向計算機提供輸入數據ーー例如,數字2和4ーー以及將它
2022-06-21 11:06:37
的領域,它幾乎滲透到我們與之互動的每一個數字事物中,無論是社交媒體、手機、汽車,甚至是家用電器。盡管如此,仍然有許多機器學習想要去的地方,但是它們很難到達。這是因為許多最先進的機器學習模型需要大量的計算
2022-04-12 10:20:35
參考右邊的幫助文檔文章目錄嵌入式系統之硬件總復習前言一、pandas是什么?二、使用步驟1.引入庫2.讀入數據總結前言提示:這里可以添加本文要記錄的大概內容:例如:隨著人工智能的不斷發(fā)展,機器學習這門技術也越來越重要,很多人都開啟了學習機器學習,本文就介紹了機器學習的基礎內容。提示:以下是本篇文
2021-12-16 06:27:44
系列文章目錄提示:這里可以添加系列文章的所有文章的目錄,目錄需要自己手動添加例如:第一章 Python 機器學習入門之pandas的使用提示:寫完文章后,目錄可以自動生成,如何生成可參考右邊的幫助
2021-08-13 07:39:46
如果你從西雅圖駕車往東行,要不了多久就會看到風力發(fā)電機組。這些巨大的機器遍布在連綿起伏的丘陵和平原上,從刮過其間從不間斷的風中生產電力。其中每一臺風機都會生成海量的數據。這些數據被用于強化機器學習
2021-07-12 06:19:05
本發(fā)明公開一種基于機器學習的車位狀態(tài)預測方法,基于歷史數據,建立回歸決策樹模型進而構建改進決策樹模型,對每個區(qū)域的停車率進行預測,基于停車率和用戶喜好度為用戶推薦相應的停車區(qū)域,獲取相應停車區(qū)域
2023-09-21 07:24:58
人工智能下面有哪些機器學習分支?如何用卷積神經網絡(CNN)方法去解決機器學習監(jiān)督學習下面的分類問題?
2021-06-16 08:09:03
每當提到機器學習,大家總是被其中的各種各樣的算法和方法搞暈,覺得無從下手。確實,機器學習的各種套路確實不少,但是如果掌握了正確的路徑和方法,其實還是有跡可循的,這里我推薦SAS的Li Hui
2019-03-07 20:18:53
以軟體機器人為背景和主題,深入講解:(1) 軟體機器人的關節(jié)設計方法;(2) 有限元分析技巧;(3) 力學模型的建立方法; (4) 基于MATLAB與視覺識別技術的軟體手柔性抓取控制與實驗等內容
2019-08-12 15:09:17
經典機器學習算法介紹章節(jié)目標:機器學習是人工智能的重要技術之一,詳細了解機器學習的原理、機制和方法,為學習深度學習與遷移學習打下堅實的基礎。二、深度學習簡介與經典網絡結構介紹 神經網絡簡介神經網絡組件簡介
2022-04-21 15:15:11
1、如何在生產中部署基于嵌入的機器學習模型 由于最近大量的研究,機器學習模型的性能在過去幾年里有了顯著的提高。雖然這些改進的模型開辟了新的可能性,但是它們只有在可以部署到生產應用中時才開始提供真正
2022-11-02 15:09:52
嵌入式linux學習方法總結
嵌入式linux的學習現在挺流行
2008-09-10 10:44:57
3703 如何使電動車電池壽命更長(方法之總結篇)
大家好,經過我的努力,如何使電動車電池壽命更長(方法之總結篇)終于不負大家
2009-12-01 10:50:05
1000 機器學習算法之最優(yōu)化方法
2017-09-04 10:05:10
0 實際情況非常復雜,傳統的分類方法不堪重負。現在,我們不再試圖用代碼來描述每一個圖像類別,決定轉而使用機器學習的方法處理圖像分類問題。 目前,許多研究者使用CNN等深度學習模型進行圖像分類;另外,經典的KNN和SVM算法
2017-09-28 19:43:49
0 監(jiān)督學習的主要任務就是用模型實現精準的預測。我們希望自己的機器學習模型在新數據(未被標注過的)上取得盡可能高的準確率。換句話說,也就是我們希望用訓練數據訓練得到的模型能適用于待測試的新數據。正是這樣
2017-10-12 15:33:42
0 由于隨機塊模型能夠有效處理不具有先驗知識的網絡,對其研究成為了機器學習、網絡數據挖掘和社會網絡分析等領域的研究熱點.如何設計出具有模型選擇能力的快速隨機塊模型學習算法,是目前隨機塊模型研究面臨的一個
2018-01-09 18:20:04
1 本文以Kaggle的Titanic入門比賽來講解stacking的應用,來討論一下Kaggle機器學習之模型融合。
2018-01-11 19:09:12
1434 
機器學習無疑是當前數據分析領域的一個熱點內容。很多人在平時的工作中都或多或少會用到機器學習的算法。這里小編為您總結一下常見的機器學習算法,以供您在工作和學習中參考。
2018-02-02 17:20:46
1950 
Score)評估死亡率的精準度,結果證實機器學習模型利用電子病歷(EHR)超音波心電圖資料,確實可準確預測病患的死亡率。
2018-06-29 09:03:00
2143 學習過概率的人一定知道貝葉斯定理,在信息領域內有著無與倫比的地位。貝葉斯算法是基于貝葉斯定理的一類算法,主要用來解決分類和回歸問題。人工智能之機器學習中最為廣泛的兩種分類模型是1)決策樹模型(Decision Tree Model)和2) 樸素貝葉斯模型(Naive Bayesian Model)。
2018-05-29 09:01:00
1128 機器學習入門方法 一說到機器學習,我被問得最多的問題是:給那些開始學習機器學習的人的最好的建議是什么?
2018-05-20 07:10:00
4537 
《機器學習與數據挖掘:方法和應用》 來源:互聯網(轉載協議)發(fā)布日期:2011-09-16 09:56瀏覽: 7729 次專欄投稿值班編輯:QQ281688302 《機器學習與數據挖掘:方法
2018-06-27 18:38:01
950 接觸機器學習有一年了,是從上張敏老師的課開始的。后來師兄推薦了一本《統計學習理論的本質》,還記得第一印象覺得“統計”二字很奇怪。之后就漸漸習以為常了,接觸到的機器學習方法都是基于統計的,以至于統計學習與機器學習成了一個概念,以至于最近看了一些東西突然覺得自己長見識了。
2018-07-07 09:40:00
13533 對信用卡交易數據建立檢測模型,使用Python庫進行預處理與機器學習建模工作,代碼通俗易懂。包括數據預處理與清洗,模型調參與評估等詳細數據分析與建模流程。
2018-10-04 09:44:00
3535 機器學習教計算機執(zhí)行人和動物與生俱來的活動:從經驗中學習。機器學習算法使用計算方法直接從數據中“學習”信息,而不依賴于預定方程模型。當可用于學習的樣本數量增加時,這些算法可自適應提高性能。
2018-11-15 15:35:54
32 對機器學習的定義和應用實例進行了介紹,涵蓋了監(jiān)督學習。貝葉斯決策理論。參數方法、多元方法、維度歸約、聚類、非參數方法、決策樹。線性判別式、多層感知器,局部模型、隱馬爾可夫模型。分類算法評估和比較,組合多學習器以及增強學習等。
2018-12-14 15:03:55
18 此處梳理出面向人工智能的機器學習方法體系,主要體現機器學習方法和邏輯關系,理清機器學習脈絡,后續(xù)文章會針對機器學習系列講解算法原理和實戰(zhàn)。抱著一顆嚴謹學習之心,有不當之處歡迎斧正。
2018-12-17 15:10:22
3952 
本文簡單總結了機器學習最常見的兩個函數,logistic函數和softmax函數。首先介紹兩者的定義和應用,最后對兩者的聯系和區(qū)別進行了總結。
2018-12-30 09:04:00
10631 
機器學習性能評價標準是模型優(yōu)化的前提,在設計機器學習算法過程中,不同的問題需要用到不同的評價標準,本文對機器學習算法常用指標進行了總結。
2019-02-13 15:09:19
5849 
這兩種方法的目標不同,盡管使用的方法類似。機器學習算法的評估使用測試集來驗證其準確性。統計模型可以使用置信區(qū)間,顯著性檢驗和其他檢驗對回歸參數進行分析,以評估模型的合法性。由于這些方法產生相同的結果,因此很容易理解為什么人們可能認為它們是相同的。
2019-04-08 08:55:00
9363 
具體來看,對于傳統的機器學習算法,模型的表現先是遵循冪定律(power law),之后趨于平緩;而對于深度學習,該問題還在持續(xù)不斷地研究中,不過圖一為目前較為一致的結論,即隨著數據規(guī)模的增長,深度
2019-05-05 11:03:31
7090 玩數據分析、數據挖掘、AI的最常用的數據分析庫numpy大總結,總結部分主要是對于機器學習和深度學習處理時常用的函數單元。
2019-05-31 16:57:01
1825 訓練集用來訓練模型,驗證集用于模型的選擇,而測試集用于最終對學習方法的評估。
2020-03-15 16:30:00
2894 本文檔的主要內容詳細介紹的是機器學習的模型評估與選擇詳細資料說明。
2020-03-24 08:00:00
0 由于意外的機器學習模型退化導致了幾個機器學習項目的失敗,我想分享一下我在機器學習模型退化方面的經驗。實際上,有很多關于模型創(chuàng)建和開發(fā)階段的宣傳,而不是模型維護。
2020-05-04 12:11:00
2409 
建立機器學習模型的想法是基于一個建設性的反饋原則。你構建一個模型,從指標中獲得反饋,進行改進,直到達到理想的精度為止。評估指標解釋了模型的性能。評估指標的一個重要方面是它們區(qū)分模型結果的能力。
2020-05-04 10:04:00
4081 
決策樹模型是白盒模型的一種,其預測結果可以由人來解釋。我們把機器學習模型的這一特性稱為可解釋性,但并不是所有的機器學習模型都具有可解釋性。
2020-07-06 09:49:06
4273 
對于初學者來說,這很容易讓人混淆,因為“機器學習算法”經常與“機器學習模型”交替使用。這兩個到底是一樣的東西呢,還是不一樣的東西?作為開發(fā)人員,你對排序算法、搜索算法等“算法”的直覺,將有助于你厘清這個困惑。在本文中,我將闡述機器學習“算法”和“模型”之間的區(qū)別。
2020-07-31 15:38:08
3900 集成學習是功能強大的機器學習技術之一。集成學習通過使用多種機器學習模型來提高預測結果的可靠性和準確性。但是,使用多種機器學習模型如何使預測結果更準確?可以采用什么樣的技術創(chuàng)建整體學習模型?以下將探討解答這些問題,并研究使用集成模型的基本原理以及創(chuàng)建集成模型的主要方法。
2020-11-11 11:13:02
6298 本系列文章主要分享近年來事件抽取方法總結,包括中文事件抽取、開放域事件抽取、事件數據生成、跨語言事件抽取、小樣本事件抽取、零樣本事件抽取等。主要包括以下幾大部分: 定義(Define) 綜述
2020-12-31 10:19:11
10785 
視頻質量評價(VQA)是以人眼的主觀質量評估結果為依據,使用算法模型對失真視頻進行評估。傳統的評估方法難以做到主觀評價結果與客觀評價結果相一致?;谏疃?b class="flag-6" style="color: red">學習的視頻質量評價方法無需加入手工特征,通過
2021-03-29 15:46:40
81 機器學習 (ML) 模型的性能既取決于學習算法,也取決于用于訓練和評估的數據。算法的作用已經得到充分研究,也是眾多挑戰(zhàn)(如 SQuAD、GLUE、ImageNet 等)的焦點。此外,數據也已經過改進
2021-04-13 14:37:16
3190 的相似度映射模型,從而在歷史水文時間序列中匹配出與預見期水文趨勢最相似的序列,從而達到水文趨勢預測的目的。為了證明所提方法的高效性和可行性,以太湖水文時間序列數據為對象進行了驗證。分析結果表明,基于機器學習的多元水文
2021-04-26 15:39:30
6 近年來,機器學習模型算法在越來越多的工業(yè)實踐中落地。在滴滴,大量線上策略由常規(guī)算法遷移到機器學習模型算法。如何搭建機器學習模型算法的質量保障體系成為質量團隊急需解決的問題之一。本文整體介紹了機器學習模型算法的質量保障方案,并進一步給出了滴滴質量團隊在機器學習模型效果評測方面的部分探索實踐。
2021-05-05 17:08:00
2911 
近年來,機器學習在學術研究領域和實際應用領域得到越來越多的關注。但構建機器學習模型不是一件簡單的事情,它需要大量的知識和技能以及豐富的經驗,才能使模型在多種場景下發(fā)揮功效。正確的機器學習模型要以數據
2021-05-05 16:39:00
1737 不同的數據集的十折交叉驗證結果進行模型選擇,提高測試公平性及測試結果的泛化能力。為避免十折交叉驗證過程中出現測試集誤差不足以近似泛化誤差的問題,采用 Fried man檢驗及 Nemeny后續(xù)檢驗相結合的方法對4種機器學習算法進行評估
2021-06-03 15:53:58
5 借鑒國外仿真模型校核與驗證( Verfication.Ⅴ alidation,V&V)標準和規(guī)范,提岀了一種系統仿真模型可信度評估通用流程和方法。對模型評估的相關概念進行了闡述,給岀了系統
2021-06-15 14:37:18
11 基于終身機器學習的主題挖掘評分和評論推薦模型
2021-06-27 15:34:37
42 OpenStack之Cinder學習筆記(開關電源技術教程ppt)-該文檔為OpenStack之Cinder學習筆記總結文檔,是一份不錯的參考資料,感興趣的可以下載看看,,,,,,,,,,,,,,,,,
2021-09-23 12:40:59
5 單片機學習方法總結資料分享
2021-11-13 20:36:05
6 簡單來說,機器學習就是針對現實問題,使用我們輸入的數據對算法進行訓練,算法在訓練之后就會生成一個模型,這個模型就是對當前問題通過數據捕捉規(guī)律的描述。然后我們將模型進一步導入數據,或者引入新的數據集
2022-06-29 10:51:08
6500 當我們辛苦收集數據、數據清洗、搭建環(huán)境、訓練模型、模型評估測試后,終于可以應用到具體場景,但是,突然發(fā)現不知道怎么調用自己的模型,更不清楚怎么去部署模型! 這也是今天“計算機視覺研究院”要和大家
2022-12-01 11:30:36
3038 機器學習正在突飛猛進地發(fā)展,新的神經網絡模型定期出現。這些模型針對特定數據集進行了訓練,并經過了準確性和處理速度的證明。開發(fā)人員需要評估 ML 模型,并確保它在部署之前滿足預期的特定閾值和功能。有
2022-12-06 14:35:10
1225 
如何評估機器學習模型的性能?典型的回答可能是:首先,將訓練數據饋送給學習算法以學習一個模型。第二,預測測試集的標簽。第三,計算模型對測試集的預測準確率。
2023-04-04 14:15:19
1651 分類是機器學習最常見的應用之一。 分類技術可預測離散的響應 — 例如,電子郵件是不是垃圾郵件,腫瘤是惡性還是良性的。 分類模型可將輸入數據劃分成不同類別。 典型的應用包括醫(yī)學成像、語音識別和信用評估。
2023-05-11 09:53:08
1944 
本電子書建立在使用 MATLAB 進行機器學習 的基礎上,后者回顧了機
器學習基礎知識,并介紹了監(jiān)督和無監(jiān)督學習的技術方法。
我們使用心音分類器為例,向您介紹真實世界中的機器學習應用程序從
2023-05-29 09:14:53
0 優(yōu)化是機器學習中的關鍵步驟。在這個機器學習系列中,我們將簡要介紹優(yōu)化問題,然后探討兩種特定的優(yōu)化方法,即拉格朗日乘子和對偶分解。這兩種方法在機器學習、強化學習和圖模型中非常流行。
2023-05-30 16:47:17
2827 
來源:DeepHubIMBA作者:AbhayParashar機器學習是人工智能的一個分支領域,致力于構建自動學習和自適應的系統,它利用統計模型來可視化、分析和預測數據。一個通用的機器學習模型包括一
2022-10-19 11:29:21
1491 
來源:機器學習研習院回歸分析為許多機器學習算法提供了堅實的基礎。在這篇文章中,我們將總結10個重要的回歸問題和5個重要的回歸問題的評價指標。1、線性回歸的假設是什么?線性回歸有四個假設線性:自變量
2022-11-10 10:02:42
1454 
聯合學習在傳統機器學習方法中的應用
2023-07-05 16:30:28
1366 
實踐中的機器學習:構建 ML 模型
2023-07-05 16:30:36
1250 監(jiān)控生產中的機器學習模型指南
2023-07-05 16:30:38
948 機器學習是一種方法,利用算法來讓機器可以自我學習和適應,而且不需要明確地編程。在許多應用中,需要機器使用歷史數據訓練模型,然后使用該模型來對新數據進行預測或分類
2023-08-02 17:36:34
1409 機器學習算法匯總 機器學習算法分類 機器學習算法模型 機器學習是人工智能的分支之一,它通過分析和識別數據模式,學習從中提取規(guī)律,并用于未來的決策和預測。在機器學習中,算法是最基本的組成部分之一。算法
2023-08-17 16:11:48
1942 機器學習算法總結 機器學習算法是什么?機器學習算法優(yōu)缺點? 機器學習算法總結 機器學習算法是一種能夠從數據中自動學習的算法。它能夠從訓練數據中學習特征,進而對未知數據進行分類、回歸、聚類等任務。通過
2023-08-17 16:11:50
2903 (VSM)算法計算相似性。本文將從以下幾個方面介紹機器學習vsm算法。 1、向量空間模型 向量空間模型是一種常見的文本表示方法,根據文本的詞頻向量將文本映射到一個高維向量空間中。這種方法在信息檢索中被廣泛使用,可以使用余弦相
2023-08-17 16:29:35
1531 、AdaBoost回歸、梯度提升決策樹回歸、人工神經網絡、隨機森林回歸、多輸出隨機森林回歸、XGBoost回歸。 需要面試或者需要總體了解/復習機器學習回歸模型的小伙伴可以通讀下本文,理論總結加代碼實操,有助于理解模型。 保序回歸 保序回歸或單
2023-11-03 10:39:49
1307 
深度學習模型在訓練過程中,往往會遇到各種問題和挑戰(zhàn),如過擬合、欠擬合、梯度消失或爆炸等。因此,對深度學習模型進行優(yōu)化與調試是確保其性能優(yōu)越的關鍵步驟。本文將從數據預處理、模型設計、超參數調整、正則化、模型集成以及調試與驗證等方面,詳細介紹深度學習的模型優(yōu)化與調試方法。
2024-07-01 11:41:13
2532 理解機器學習中的訓練集、驗證集和測試集,是掌握機器學習核心概念和流程的重要一步。這三者不僅構成了模型學習與評估的基礎框架,還直接關系到模型性能的可靠性和泛化能力。以下是一篇深入探討這三者概念、作用、選擇方法及影響的文章。
2024-07-10 15:45:31
8606 在機器學習中,交叉驗證(Cross-Validation)是一種重要的評估方法,它通過將數據集分割成多個部分來評估模型的性能,從而避免過擬合或欠擬合問題,并幫助選擇最優(yōu)的超參數。本文將詳細探討幾種
2024-07-10 16:08:50
3613 在機器學習中,數據分割是一項至關重要的任務,它直接影響到模型的訓練效果、泛化能力以及最終的性能評估。本文將從多個方面詳細探討機器學習中數據分割的方法,包括常見的分割方法、各自的優(yōu)缺點、適用場景以及實際應用中的注意事項。
2024-07-10 16:10:46
3999 AI大模型與傳統機器學習在多個方面存在顯著的區(qū)別。以下是對這些區(qū)別的介紹: 一、模型規(guī)模與復雜度 AI大模型 :通常包含數十億甚至數萬億的參數,模型大小可以達到數百GB甚至更大。這些模型結構復雜,由
2024-10-23 15:01:02
3819 AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習是AI大模型的基礎 技術支撐 :深度學習是一種機器學習的方法,通過多層神經網絡來模擬
2024-10-23 15:25:50
3784 當今,隨著算法的不斷優(yōu)化、數據量的爆炸式增長以及計算能力的飛速提升,機器學習模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機器學習模型市場的未來發(fā)展。
2025-02-13 09:39:08
668
評論