今天給大家介紹一下FPGA上部署深度學(xué)習(xí)的算法模型的方法以及平臺。希望通過介紹,算法工程師在FPGA的落地上能“稍微”緩和一些,小白不再那么迷茫。
2022-07-22 10:14:44
4939 在未來的某個時候,人們必定能夠相對自如地運用人工智能,安全地駕車出行。這個時刻何時到來我無法預(yù)見;但我相信,彼時“智能”會顯現(xiàn)出更“切實”的意義。與此同時,通過深度學(xué)習(xí)方法,人工智能的實際應(yīng)用能夠在
2022-11-11 07:55:50
利用ML構(gòu)建無線環(huán)境地圖及其在無線通信中的應(yīng)用?使用深度學(xué)習(xí)的收發(fā)機設(shè)計和信道解碼基于ML的混合學(xué)習(xí)方法,用于信道估計、建模、預(yù)測和壓縮 使用自動編碼器等ML技術(shù)的端到端通信?無線電資源管理深度強化學(xué)習(xí)
2021-07-01 10:49:03
時間安排大綱具體內(nèi)容實操案例三天關(guān)鍵點1.強化學(xué)習(xí)的發(fā)展歷程2.馬爾可夫決策過程3.動態(tài)規(guī)劃4.無模型預(yù)測學(xué)習(xí)5.無模型控制學(xué)習(xí)6.價值函數(shù)逼近7.策略梯度方法8.深度強化學(xué)習(xí)-DQN算法系列9.
2022-04-21 14:57:39
學(xué)到了大量關(guān)于深度學(xué)習(xí)的相關(guān)知識。在這里,我想分享人工智能工程師 10 個用于解決機器學(xué)習(xí)問題的強大的深度學(xué)習(xí)方法。但是,我們首先需要定義什么是深度學(xué)習(xí)。如何定義深度學(xué)習(xí)是很多人面臨的一個挑戰(zhàn),因為它
2019-03-07 20:17:28
FPGA學(xué)習(xí)快一年了,感覺達(dá)到了一定的瓶頸,沒人帶,自學(xué)很吃力,現(xiàn)在只會簡單地做一些小東西,想更加系統(tǒng)的學(xué)習(xí)一下FPGA將來從事FPGA有沒有好的學(xué)習(xí)方法或者發(fā)展方向什么的?求不吝賜教。
2015-11-24 17:58:14
。那么究竟如何才能高效學(xué)習(xí)好FPGA技術(shù)呢?本期邀請到的FPGA專家梅雪松,將為大家解答FPGA有效學(xué)習(xí)方法。專家觀點:學(xué)習(xí)FPGA技術(shù),或者不僅局限于FPGA,學(xué)習(xí)任何一個新技術(shù)只要運用科學(xué)
2017-01-11 13:58:34
宋寶華: 迭代螺旋法——關(guān)于Linux學(xué)習(xí)方法的血淚建議
2020-04-15 11:38:59
剛才在q群上有人發(fā)表了關(guān)于MCU的學(xué)習(xí)方法,在此分享下,看規(guī)格書(datasheet、errata sheet),看懂了,背熟了,看原理圖,理解了,看例子程序,理解透了,修改,開始自己寫程序,不知大家有沒有其他方法,可以在此分享下。
2013-05-23 10:01:52
STM32學(xué)習(xí)方法
2023-09-28 06:18:03
STM32的學(xué)習(xí)方法
2020-08-14 04:00:51
大家給推薦下 arm 學(xué)習(xí)方法
2012-03-30 09:10:09
最近把dsp的本科教材《dsp原理及應(yīng)用》學(xué)習(xí)完了,也重新復(fù)習(xí)了一下信號與系統(tǒng)予數(shù)字信號處理。不曉得如何繼續(xù)深入下去,畢竟手邊沒有實踐機會。在網(wǎng)上找了一些dsp的學(xué)習(xí)方法,收錄于此。百度知道中看
2012-03-01 13:55:18
stm32學(xué)習(xí)方法以及資料
2016-11-30 11:42:50
這學(xué)習(xí)stm32的是越來越多,但是沒有學(xué)習(xí)方法的話還真不好學(xué),一看一懵,還在努力的學(xué)友們加油努力,邁過這個坎我弄了幾個視頻的資具體是哪的我就就說了避嫌省的給人家做了廣告!就不好了
2018-11-09 13:20:39
大家好,本人只學(xué)過AVR單片機,對C語言沒有學(xué)過,想學(xué)習(xí)一下STM32,是否有推薦的學(xué)習(xí)方法、教程和開發(fā)板!非常感謝
2018-09-14 09:40:27
學(xué)習(xí)單片機的動機不外乎有四種:一是為興趣愛好而學(xué),二是為專業(yè)而學(xué);三是為飯碗而學(xué);四是在工作中被逼而學(xué)。不管是哪種動機,因主修專業(yè)的不同以及電子基礎(chǔ)的深淺不同,對于不同的人可能采用不同的學(xué)習(xí)方法
2021-07-15 09:11:11
不同的學(xué)習(xí)方法,根據(jù)筆者的親身學(xué)習(xí)經(jīng)驗,提出筆者的學(xué)習(xí)方法和步驟。Part 1 基礎(chǔ)理論知識學(xué)習(xí)基礎(chǔ)理論知識包括模擬電路、數(shù)字電路和C語言知識。模擬電路和數(shù)字電路屬于抽象學(xué)科,要把它學(xué)好還得費點精神。在你
2021-11-30 06:38:31
ARM菜鳥跪求嵌入式ARM+Linux的學(xué)習(xí)方法是什么?學(xué)習(xí)嵌入式ARM+linux有什么方法么? 學(xué)習(xí)路線是什么? 路過的朋友可否簡單說下??
2020-07-16 08:09:29
嵌入式Linux學(xué)習(xí)方法
2012-08-20 15:26:55
很多新手都問過嵌入式系統(tǒng)學(xué)習(xí)方法,好的學(xué)習(xí)方法可以事半功倍,學(xué)習(xí)嵌入式系統(tǒng),掌握了好的學(xué)習(xí)方法,自然可以水到渠成。本篇文章就來說說嵌入式系統(tǒng)學(xué)習(xí)方法,新手必看哦! 第一,學(xué)習(xí)基本的裸機編程 對于
2021-12-17 06:42:07
有老師跟我說學(xué)習(xí)方法,直接從模塊化電路 一個一個的學(xué),不明白的再看電路基礎(chǔ)的相關(guān)章節(jié),這樣好嗎?有沒有 具體 有哪些模塊,求詳細(xì)說下,,或有其他快速學(xué)習(xí)的方法.請指點下.
2016-06-25 22:28:08
最簡單的電路圖學(xué)習(xí)方法
2013-06-18 10:59:01
求128單片機學(xué)習(xí)方法
2013-01-06 22:38:17
統(tǒng)計學(xué)習(xí)方法感知機
2020-07-15 10:33:49
萌新求助,求大佬分享單片機學(xué)習(xí)方法
2021-11-08 08:36:47
怎樣從傳統(tǒng)機器學(xué)習(xí)方法過渡到深度學(xué)習(xí)?
2021-10-14 06:51:23
請教STM32開發(fā)板的學(xué)習(xí)方法,請教快速高效的方法
2019-04-22 06:35:06
請問STM32單片機的學(xué)習(xí)方法有哪些?
2021-10-26 06:59:15
模擬電子電路的學(xué)習(xí)方法
2009-08-07 15:49:55
254 嵌入式linux學(xué)習(xí)方法總結(jié)
嵌入式linux的學(xué)習(xí)現(xiàn)在挺流行
2008-09-10 10:44:57
3703 電子技術(shù)自學(xué)的學(xué)習(xí)方法人的一生中使用自立學(xué)習(xí)法的時間最長,自己看書、自己動手就是自立學(xué)習(xí)法。1.具備基本條件事半功倍為了高效率運用自
2009-04-07 09:34:54
25679 基于改進遺傳算法的支持向量機特征選擇
引言
支持向量機是一種在統(tǒng)計學(xué)習(xí)理論的基礎(chǔ)上發(fā)展而來的機器學(xué)習(xí)方法[1],通過學(xué)習(xí)類別之間分界面附近的精
2010-02-06 10:36:49
1786 
單隱藏層前饋神經(jīng)網(wǎng)絡(luò)(Single-hidden Layer Feedforward Neural Network, SLFN)已經(jīng)在模式識別、自動控制及數(shù)據(jù)挖掘等領(lǐng)域取得了廣泛的應(yīng)用,但傳統(tǒng)學(xué)習(xí)方法的速度遠(yuǎn)遠(yuǎn)不能滿足實際的需要,成為
2011-05-18 18:56:42
76 ZigBee簡介和學(xué)習(xí)方法很適合入門級別的人學(xué)習(xí)。
2015-12-07 18:36:58
8 zigbee簡介以及學(xué)習(xí)方法,ZigBee的歷史發(fā)展前景。
2016-04-15 14:07:57
14 詳細(xì)介紹AVR單片機學(xué)習(xí)方法,很適合初學(xué)者!
2016-05-16 17:15:25
3 實際情況非常復(fù)雜,傳統(tǒng)的分類方法不堪重負(fù)?,F(xiàn)在,我們不再試圖用代碼來描述每一個圖像類別,決定轉(zhuǎn)而使用機器學(xué)習(xí)的方法處理圖像分類問題。 目前,許多研究者使用CNN等深度學(xué)習(xí)模型進行圖像分類;另外,經(jīng)典的KNN和SVM算法
2017-09-28 19:43:49
0 深度學(xué)習(xí)與傳統(tǒng)的機器學(xué)習(xí)最主要的區(qū)別在于隨著數(shù)據(jù)規(guī)模的增加其性能也不斷增長。當(dāng)數(shù)據(jù)很少時,深度學(xué)習(xí)算法的性能并不好。這是因為深度學(xué)習(xí)算法需要大量的數(shù)據(jù)來完美地理解它。另一方面,在這種情況下,傳統(tǒng)的機器學(xué)習(xí)算法使用制定的規(guī)則,性能會比較好。
2017-10-27 16:50:18
2147 
文本實體提取是自然語言處理(NLP)的主要任務(wù)之一。隨著近期深度學(xué)習(xí)領(lǐng)域快速發(fā)展,我們可以將這些算法應(yīng)用到 NLP 任務(wù)中,并得到準(zhǔn)確率遠(yuǎn)超傳統(tǒng)方法的結(jié)果。我嘗試過分別使用深度學(xué)習(xí)和傳統(tǒng)方法來提取文章信息,結(jié)果非常驚人:深度學(xué)習(xí)的準(zhǔn)確率達(dá)到了 85%,遠(yuǎn)遠(yuǎn)領(lǐng)先于傳統(tǒng)算法的 65%。
2018-07-13 08:33:00
7111 
計算機計算性能的提升使得深度學(xué)習(xí)成為了可能.作為計算機視覺領(lǐng)域的重要發(fā)展方向之一的目標(biāo)檢測也開始結(jié)合深度學(xué)習(xí)方法并廣泛應(yīng)用于各行各業(yè),受限于網(wǎng)絡(luò)的復(fù)雜度和檢測算法的設(shè)計。目標(biāo)檢測的速度和精度成為一個
2017-12-15 10:15:02
0 為提高光伏出力的預(yù)測精度,提出了一種改進深度學(xué)習(xí)算法的光伏出力預(yù)測方法。首先,針對傳統(tǒng)的深度學(xué)習(xí)算法采用批量梯度下降(batch gradient descent,BGD)法訓(xùn)練模型參數(shù)速度慢
2017-12-17 10:42:45
8 針對原有集成學(xué)習(xí)多樣性不足而導(dǎo)致的集成效果不夠顯著的問題,提出一種基于概率校準(zhǔn)的集成學(xué)習(xí)方法以及兩種降低多重共線性影響的方法。首先,通過使用不同的概率校準(zhǔn)方法對原始分類器給出的概率進行校準(zhǔn);然后
2017-12-22 11:02:00
0 針對現(xiàn)有的大部分多示例多標(biāo)記( MIML)算法都沒有考慮如何更好地表示對象特征這一問題,將概率潛在語義分析( PLSA)模型和神經(jīng)網(wǎng)絡(luò)(NN)相結(jié)合,提出了基于主題模型的多示例多標(biāo)記學(xué)習(xí)方法。算法
2018-01-05 10:22:27
0 模型驅(qū)動的深度學(xué)習(xí)方法近年來,深度學(xué)習(xí)在人工智能領(lǐng)域一系列困難問題上取得了突破性成功應(yīng)用。
2018-01-24 11:30:13
5356 
這篇論文對于使用深度學(xué)習(xí)來改進IoT領(lǐng)域的數(shù)據(jù)分析和學(xué)習(xí)方法進行了詳細(xì)的綜述。
2018-03-01 11:05:12
8194 
在機器學(xué)習(xí)(Machine learning)領(lǐng)域。主要有三類不同的學(xué)習(xí)方法:監(jiān)督學(xué)習(xí)(Supervised learning)、非監(jiān)督學(xué)習(xí)(Unsupervised learning)、半監(jiān)督學(xué)習(xí)(Semi-supervised learning)。
2018-05-07 09:09:01
15019 多個針對不同深度模型的開源實現(xiàn),Google、Facebook、百度、騰訊等公司也實現(xiàn)了各自的并行化框架。深度學(xué)習(xí)是目前最接近人腦的智能學(xué)習(xí)方法,深度學(xué)習(xí)引爆的這場革命,將人工智能帶上了一個新的臺階,將對一大批產(chǎn)品和服務(wù)產(chǎn)生深遠(yuǎn)影響。
2018-05-18 09:48:00
4983 
為了達(dá)到人類學(xué)習(xí)的速率,斯坦福的研究人員們提出了一種基于目標(biāo)的策略強化學(xué)習(xí)方法——SOORL,把重點放在對策略的探索和模型選擇上。
2018-06-06 11:18:23
5925 
具體學(xué)習(xí)方法是通讀不同來源的程序,在程序中找到相關(guān)的函數(shù)庫的應(yīng)用,然后再閱讀相關(guān)文檔,有條件的實驗。對于內(nèi)容的選擇方面,根據(jù)入門內(nèi)容和未來應(yīng)用,將所涉及的范圍精簡到最低,但是對所選擇的部分的學(xué)習(xí)則力求明確。以下是我按照自己的需求對程序庫函數(shù)排列的學(xué)習(xí)順序:
2018-09-12 15:05:23
10 此處梳理出面向人工智能的機器學(xué)習(xí)方法體系,主要體現(xiàn)機器學(xué)習(xí)方法和邏輯關(guān)系,理清機器學(xué)習(xí)脈絡(luò),后續(xù)文章會針對機器學(xué)習(xí)系列講解算法原理和實戰(zhàn)。抱著一顆嚴(yán)謹(jǐn)學(xué)習(xí)之心,有不當(dāng)之處歡迎斧正。
2018-12-17 15:10:22
3953 
許多傳統(tǒng)的遷移學(xué)習(xí)方法都是利用預(yù)先訓(xùn)練好的語言模型(LMs)來實現(xiàn)的,這些模型已經(jīng)非常流行,并且具有翻譯上下文信息的能力、高級建模語法和語義語言特性,能夠在對象識別、機器翻譯、文本分類等許多任務(wù)中生成高質(zhì)量的結(jié)果。
2019-03-12 15:13:59
4150 
具體來看,對于傳統(tǒng)的機器學(xué)習(xí)算法,模型的表現(xiàn)先是遵循冪定律(power law),之后趨于平緩;而對于深度學(xué)習(xí),該問題還在持續(xù)不斷地研究中,不過圖一為目前較為一致的結(jié)論,即隨著數(shù)據(jù)規(guī)模的增長,深度
2019-05-05 11:03:31
7090 中國科學(xué)院新疆理化技術(shù)研究所研究人員首次開發(fā)和提出了基于序列信息來預(yù)測潛在的抗癌多肽的深度學(xué)習(xí)方法。首先,研究人員基于現(xiàn)有的研究,整理構(gòu)建了用于機器學(xué)習(xí)的抗癌多肽數(shù)據(jù)集
2019-09-20 15:13:00
3264 
區(qū)塊鏈數(shù)據(jù)集提供了一個與加密貨幣資產(chǎn)行為相關(guān)的獨特的數(shù)據(jù)宇宙,因此,為機器學(xué)習(xí)方法的應(yīng)用提供了獨特的機會。
2019-11-26 09:49:14
1201 深度學(xué)習(xí)作為機器學(xué)習(xí)的一個分支,其學(xué)習(xí)方法可以分為監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)。
2020-01-30 09:29:00
3915 
近年來,遷移學(xué)習(xí)已經(jīng)引起了廣泛的關(guān)注和研究。遷移學(xué)習(xí)是運用已存有的知識對不同但相關(guān)領(lǐng)域問題進行求解的一種新的機器學(xué)習(xí)方法。它放寬了傳統(tǒng)機器學(xué)習(xí)中的兩個基本假設(shè):(1) 用于學(xué)習(xí)的訓(xùn)練樣本與新的測試
2020-07-17 08:00:00
0 “訓(xùn)練”,通過各種算法從數(shù)據(jù)中學(xué)習(xí)如何完成任務(wù)。機器學(xué)習(xí)傳統(tǒng)的算法包括決策樹、聚類、貝葉斯分類等。從學(xué)習(xí)方法上來分可以分為監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)、半監(jiān)督學(xué)習(xí)、集成學(xué)習(xí)、深度學(xué)習(xí)和強化學(xué)習(xí)。
2020-07-26 11:14:44
12158 集成學(xué)習(xí)方法是一類先進的機器學(xué)習(xí)方法,這類方法訓(xùn)練多個學(xué)習(xí)器并將它們結(jié)合起來解決一個問題,在實踐中獲得了巨大成功,并成為機器學(xué)習(xí)領(lǐng)域的“常青樹”,受到學(xué)術(shù)界和產(chǎn)業(yè)界的廣泛關(guān)注。
2020-08-16 11:40:51
1123 
傳統(tǒng)計算機視覺方法使用成熟的 CV 技術(shù)處理目標(biāo)檢測問題,如特征描述子(SIFT、SUR、BRIEF 等)。在深度學(xué)習(xí)興起前,圖像分類等任務(wù)需要用到特征提取步驟,特征即圖像中「有趣」、描述性或信息性的小圖像塊。
2020-09-24 11:25:48
2996 
深度學(xué)習(xí)是一個廣闊的領(lǐng)域,它圍繞著一種形態(tài)由數(shù)百萬甚至數(shù)十億個變量決定并不斷變化的算法——神經(jīng)網(wǎng)絡(luò)。似乎每隔一天就有大量的新方法和新技術(shù)被提出來。不過,總的來說,現(xiàn)代深度學(xué)習(xí)可以分為三種基本的學(xué)習(xí)范式。每一種都有自己的學(xué)習(xí)方法和理念,提升了機器學(xué)習(xí)的能力,擴大了其范圍。
2020-10-23 14:59:21
13708 
、SVM + doc2vec 第 1-3 組屬于深度學(xué)習(xí)方法,第 4-6 組屬于傳統(tǒng)機器學(xué)習(xí)方法,第 7 組算是種深度與傳統(tǒng)合作的方法,畫風(fēng)清奇,拿來試試看看效果 源
2020-11-02 15:37:15
6065 
介紹使圖像分割的方法,包括傳統(tǒng)方法和深度學(xué)習(xí)方法,以及應(yīng)用場景。 基于人工智能和深度學(xué)習(xí)方法的現(xiàn)代計算機視覺技術(shù)在過去10年里取得了顯著進展。如今,它被用于圖像分類、人臉識別、圖像中物體的識別、視頻
2020-11-27 10:29:19
3883 隨著近期深度學(xué)習(xí)領(lǐng)域快速發(fā)展,我們可以將這些算法應(yīng)用到 NLP 任務(wù)中,并得到準(zhǔn)確率遠(yuǎn)超傳統(tǒng)方法的結(jié)果。我嘗試過分別使用深度學(xué)習(xí)和傳統(tǒng)方法來提取文章信息,結(jié)果非常驚人:深度學(xué)習(xí)的準(zhǔn)確率達(dá)到了 85%,遠(yuǎn)遠(yuǎn)領(lǐng)先于傳統(tǒng)算法的 65%。
2020-12-25 19:15:13
1108 導(dǎo)讀 近年來,深度學(xué)習(xí)方法在特征抽取深度和模型精度上表現(xiàn)優(yōu)異,已經(jīng)超過了傳統(tǒng)方法,但無論是傳統(tǒng)機器學(xué)習(xí)還是深度學(xué)習(xí)方法都依賴大量標(biāo)注數(shù)據(jù)來訓(xùn)練模型,而現(xiàn)有的研究對少量標(biāo)注數(shù)據(jù)學(xué)習(xí)問題探討較少。本文將
2021-01-03 09:35:00
11281 
許多計算機視覺任務(wù)需要對圖像進行智能分割,以理解圖像中的內(nèi)容,并使每個部分的分析更加容易。今天的圖像分割技術(shù)使用計算機視覺深度學(xué)習(xí)模型來理解圖像的每個像素所代表的真實物體,這在十年前是無法想象的。
2021-01-08 14:44:02
10006 近年來人體姿態(tài)估計作為計算機視覺領(lǐng)域的熱點,在視頻監(jiān)控、人機交互、智慧校園等領(lǐng)域具有廣泛的應(yīng)用前景。隨著神經(jīng)網(wǎng)絡(luò)的快速發(fā)展,采用深度學(xué)習(xí)方法進行二維人體姿態(tài)估計,相較于傳統(tǒng)需要人工設(shè)定特征的方法
2021-04-27 16:16:07
7 引言 攝像頭傳統(tǒng)視覺技術(shù)在算法上相對容易實現(xiàn),因此已被現(xiàn)有大部分車廠用于輔助駕駛功能。但是隨著自動駕駛技術(shù)的發(fā)展,基于深度學(xué)習(xí)的算法開始興起,本期小編就來說說深度視覺算法相關(guān)技術(shù)方面的資料,讓我們
2021-05-27 17:00:35
10685 
面向異質(zhì)信息的網(wǎng)絡(luò)表示學(xué)習(xí)方法綜述
2021-06-09 14:12:29
13 單片機學(xué)習(xí)方法總結(jié)資料分享
2021-11-13 20:36:05
6 向量機、隨機森林及以卷積網(wǎng)絡(luò)層和全連接層為主要組成單元的深度神經(jīng)網(wǎng)絡(luò)。本文通過重點引述近幾年發(fā)表在國際期刊和會議上的相關(guān)前沿研究工作,詳細(xì)論述了將機器學(xué)習(xí)方法應(yīng)用于水聲被動定位的關(guān)鍵理論基礎(chǔ)、單水聽器和陣列前端信號
2021-12-24 11:18:27
981 
融合零樣本學(xué)習(xí)和小樣本學(xué)習(xí)的弱監(jiān)督學(xué)習(xí)方法綜述 來源:《系統(tǒng)工程與電子技術(shù)》,作者潘崇煜等 摘 要:?深度學(xué)習(xí)模型嚴(yán)重依賴于大量人工標(biāo)注的數(shù)據(jù),使得其在數(shù)據(jù)缺乏的特殊領(lǐng)域內(nèi)應(yīng)用嚴(yán)重受限。面對數(shù)據(jù)缺乏
2022-02-09 11:22:37
3057 
深度學(xué)習(xí)方法的思路是掌握數(shù)據(jù)中的跨時非線性依賴。從結(jié)果來看,這些深度學(xué)習(xí)方法不僅優(yōu)于 ARIMA 等傳統(tǒng)方法和梯度提升回歸樹(Gradient Boosting Regression Tree
2022-03-24 13:59:24
2374 但是無可否認(rèn)的是深度學(xué)習(xí)實在太好用啦!極大地簡化了傳統(tǒng)機器學(xué)習(xí)的整體算法分析和學(xué)習(xí)流程,更重要的是在一些通用的領(lǐng)域任務(wù)刷新了傳統(tǒng)機器學(xué)習(xí)算法達(dá)不到的精度和準(zhǔn)確率。
2022-04-26 15:07:20
5600 是不是深度學(xué)習(xí)就可以解決所有問題呢?是不是它就比傳統(tǒng)計算機視覺方法好呢?但是深度學(xué)習(xí)無法解決所有的問題,在一些問題上,具備全部特征的傳統(tǒng)技術(shù)仍是更好的方案。此外,深度學(xué)習(xí)可以和傳統(tǒng)算法結(jié)合,以克服深度學(xué)習(xí)帶來的計算力,時間,特點,輸入的質(zhì)量等方面的挑戰(zhàn)。
2022-11-28 11:01:15
2492 深度學(xué)習(xí)推動了數(shù)字圖像處理領(lǐng)域的極限。但是,這并不是說傳統(tǒng)計算機視覺技術(shù)已經(jīng)過時了。本文將分析每種方法的優(yōu)缺點。本文的目的是促進有關(guān)是否應(yīng)保留經(jīng)典計算機視覺技術(shù)知識的討論。本文還將探討如何將
2022-11-29 17:09:17
1809 深度學(xué)習(xí)已經(jīng)徹底改變了機器學(xué)習(xí)系統(tǒng)及其功能,但它不一定是最適合所有任務(wù)的方法。對于其他類型的應(yīng)用程序,使用傳統(tǒng)的模式識別方法(如邏輯回歸、樸素貝葉斯或 k 均值聚類)可能更合適。因此,選擇正確的機器學(xué)習(xí)算法的標(biāo)準(zhǔn)是必要的。這些標(biāo)準(zhǔn)描述如下。
2022-12-02 14:49:00
1212 
為了解決上述問題,本文將目光從任務(wù)專用的soft prompt模型設(shè)計轉(zhuǎn)移到任務(wù)通用的模型參數(shù)初始化點搜索,以幫助模型快速適應(yīng)到不同的少標(biāo)注任務(wù)上。本文采用近年提出的基于優(yōu)化的元學(xué)習(xí)方法,例如MAML[4]、Reptile[5]等
2022-12-15 15:19:30
1952 電子發(fā)燒友網(wǎng)站提供《使用深度學(xué)習(xí)方法對音樂流派進行分類.zip》資料免費下載
2023-02-08 10:02:06
1 但由于缺陷多種多樣,傳統(tǒng)的機器視覺算法很難做到對缺陷特征完整的建模和遷移,所以越來越多的學(xué)者和工程人員開始將深度學(xué)習(xí)算法引入到缺陷檢測領(lǐng)域中。
2023-02-13 15:39:57
1947 自深度學(xué)習(xí)出現(xiàn)之后,研究者設(shè)計出了多種多樣的基于卷積神經(jīng)網(wǎng)絡(luò)的解決方案。和傳統(tǒng)方法一樣,早期的深度學(xué)習(xí)方法依然需要依賴一定量的人工輔助信息,例如三分圖(trimap),涂抹(scribble),背景圖像等等
2023-04-20 09:31:43
1297 聯(lián)合學(xué)習(xí)在傳統(tǒng)機器學(xué)習(xí)方法中的應(yīng)用
2023-07-05 16:30:28
1366 
摘 要:點云分割是點云數(shù)據(jù)理解中的一個關(guān)鍵技術(shù),但傳統(tǒng)算法無法進行實時語義分割。近年來深度學(xué)習(xí)被應(yīng)用在點云分割上并取得了重要進展。綜述了近四年來基于深度學(xué)習(xí)的點云分割的最新工作,按基本思想分為
2023-07-20 15:23:59
3 深度學(xué)習(xí)算法簡介 深度學(xué)習(xí)算法是什么?深度學(xué)習(xí)算法有哪些?? 作為一種現(xiàn)代化、前沿化的技術(shù),深度學(xué)習(xí)已經(jīng)在很多領(lǐng)域得到了廣泛的應(yīng)用,其能夠不斷地從數(shù)據(jù)中提取最基本的特征,從而對大量的信息進行機器學(xué)習(xí)
2023-08-17 16:02:56
10417 深度學(xué)習(xí)算法工程師是做什么 深度學(xué)習(xí)算法工程師是一種高級技術(shù)人才,是數(shù)據(jù)科學(xué)中創(chuàng)新的推動者,也是實現(xiàn)人工智能應(yīng)用的重要人才。他們致力于開發(fā)和實現(xiàn)深度機器學(xué)習(xí)算法來解決各種現(xiàn)實問題,應(yīng)用于各個領(lǐng)域,如
2023-08-17 16:03:01
2130 什么是深度學(xué)習(xí)算法?深度學(xué)習(xí)算法的應(yīng)用 深度學(xué)習(xí)算法被認(rèn)為是人工智能的核心,它是一種模仿人類大腦神經(jīng)元的計算模型。深度學(xué)習(xí)是機器學(xué)習(xí)的一種變體,主要通過變換各種架構(gòu)來對大量數(shù)據(jù)進行學(xué)習(xí)以及分類處理
2023-08-17 16:03:04
3075 深度學(xué)習(xí)算法的選擇建議 隨著深度學(xué)習(xí)技術(shù)的普及,越來越多的開發(fā)者將它應(yīng)用于各種領(lǐng)域,包括圖像識別、自然語言處理、聲音識別等等。對于剛開始學(xué)習(xí)深度學(xué)習(xí)的開發(fā)者來說,選擇適合自己的算法和框架是非
2023-08-17 16:11:05
1342 深度學(xué)習(xí)算法庫框架學(xué)習(xí) 深度學(xué)習(xí)是一種非常強大的機器學(xué)習(xí)方法,它可以用于許多不同的應(yīng)用程序,例如計算機視覺、語言處理和自然語言處理。然而,實現(xiàn)深度學(xué)習(xí)技術(shù)需要使用一些算法庫框架。在本文中,我們將探討
2023-08-17 16:11:07
1407 基于神經(jīng)網(wǎng)絡(luò)的機器學(xué)習(xí)方法。 深度學(xué)習(xí)算法可以分為兩大類:監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)。監(jiān)督學(xué)習(xí)的基本任務(wù)是訓(xùn)練模型去學(xué)習(xí)輸入數(shù)據(jù)的特征和其對應(yīng)的標(biāo)簽,然后用于新數(shù)據(jù)的預(yù)測。而無監(jiān)督學(xué)習(xí)通常用于聚類、降維和生成模型等任務(wù)中
2023-08-17 16:11:26
1829 梳理單片機學(xué)習(xí)方法、產(chǎn)品開發(fā)流程
2023-09-21 17:20:07
1178 
深度學(xué)習(xí)作為機器學(xué)習(xí)的一個分支,其學(xué)習(xí)方法可以分為監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)。兩種方法都具有其獨特的學(xué)習(xí)模型:多層感知機 、卷積神經(jīng)網(wǎng)絡(luò)等屬于監(jiān) 督學(xué)習(xí);深度置信網(wǎng) 、自動編碼器 、去噪自動編碼器 、稀疏編碼等屬于無監(jiān)督學(xué)習(xí)。
2023-10-09 10:23:42
1153 
在人工智能的浪潮中,機器學(xué)習(xí)和深度學(xué)習(xí)無疑是兩大核心驅(qū)動力。它們各自以其獨特的方式推動著技術(shù)的進步,為眾多領(lǐng)域帶來了革命性的變化。然而,盡管它們都屬于機器學(xué)習(xí)的范疇,但深度學(xué)習(xí)和傳統(tǒng)機器學(xué)習(xí)在方法、應(yīng)用、優(yōu)勢等方面卻存在顯著的差異。本文將對這兩者進行深入的對比和分析。
2024-07-01 11:40:52
3820 隨著大數(shù)據(jù)時代的到來,傳統(tǒng)機器學(xué)習(xí)方法在處理復(fù)雜模式上的局限性日益凸顯。深度學(xué)習(xí)(Deep Learning)作為一種新興的人工智能技術(shù),以其強大的非線性表達(dá)能力和自學(xué)習(xí)能力,在圖像識別、自然語言
2024-07-04 11:44:18
4651 應(yīng)用中往往難以實現(xiàn)。因此,無監(jiān)督學(xué)習(xí)在深度學(xué)習(xí)中扮演著越來越重要的角色。本文旨在綜述深度學(xué)習(xí)中的無監(jiān)督學(xué)習(xí)方法,包括自編碼器、生成對抗網(wǎng)絡(luò)、聚類算法等,并分析它們的原理、應(yīng)用場景以及優(yōu)缺點。
2024-07-09 10:50:07
2734 用于開發(fā)生物學(xué)數(shù)據(jù)的機器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個強大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度學(xué)習(xí)相比,傳統(tǒng)方法在給定問題上的開發(fā)和測試速度更快。開發(fā)深度神經(jīng)網(wǎng)絡(luò)的架構(gòu)并進行訓(xùn)練
2024-12-30 09:16:18
2075 
評論