電子發(fā)燒友網(wǎng)報(bào)道(文 / 周凱揚(yáng))深度學(xué)習(xí)硬件在 AI 時(shí)代已經(jīng)引領(lǐng)了不少設(shè)計(jì)創(chuàng)新,無論是簡單的邊緣推理,還是大規(guī)模自然語言模型的訓(xùn)練,都有了性能上的突破。作為業(yè)內(nèi)在深度學(xué)習(xí)上投入最多的公司之一
2022-12-05 01:37:28
3351 相比GPU和GPP,F(xiàn)PGA在滿足深度學(xué)習(xí)的硬件需求上提供了具有吸引力的替代方案。憑借流水線并行計(jì)算的能力和高效的能耗,F(xiàn)PGA將在一般的深度學(xué)習(xí)應(yīng)用中展現(xiàn)GPU和GPP所沒有的獨(dú)特優(yōu)勢。同時(shí),算法
2016-07-28 12:16:38
7665 2017年,英偉達(dá)推出了適用于深度學(xué)習(xí)的Volta架構(gòu),它的設(shè)計(jì)重點(diǎn)之一是可以更好地分?jǐn)傊噶铋_銷。Volta架構(gòu)中引入了Tensor Core,用于深度學(xué)習(xí)的加速。
2022-09-21 10:35:55
4153 一:深度學(xué)習(xí)DeepLearning實(shí)戰(zhàn)時(shí)間地點(diǎn):1 月 15日— 1 月18 日二:深度強(qiáng)化學(xué)習(xí)核心技術(shù)實(shí)戰(zhàn)時(shí)間地點(diǎn): 1 月 27 日— 1 月30 日(第一天報(bào)到 授課三天;提前環(huán)境部署 電腦
2021-01-09 17:01:54
深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究。含多隱層的多層感知器就是一種深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發(fā)現(xiàn)數(shù)據(jù)的分布式特征表示?;逎y懂的概念,略微有些難以
2018-07-04 16:07:53
在未來的某個(gè)時(shí)候,人們必定能夠相對(duì)自如地運(yùn)用人工智能,安全地駕車出行。這個(gè)時(shí)刻何時(shí)到來我無法預(yù)見;但我相信,彼時(shí)“智能”會(huì)顯現(xiàn)出更“切實(shí)”的意義。與此同時(shí),通過深度學(xué)習(xí)方法,人工智能的實(shí)際應(yīng)用能夠在
2022-11-11 07:55:50
嵌入式開發(fā)和平臺(tái)抽象;在TI硬件上實(shí)現(xiàn)用于加速CNN的高度優(yōu)化的內(nèi)核,以及支持從開放框架(如Caffe和TensorFlow)到使用TIDL應(yīng)用程序編程界面的嵌入式框架進(jìn)行網(wǎng)絡(luò)轉(zhuǎn)換的轉(zhuǎn)換器。有關(guān)此解決方案的更多詳細(xì)信息,請(qǐng)閱讀白皮書“TIDL:嵌入式低功耗深度學(xué)習(xí),” 并查看其它資源中的視頻。
2019-03-13 06:45:03
深度學(xué)習(xí)常用模型有哪些?深度學(xué)習(xí)常用軟件工具及平臺(tái)有哪些?深度學(xué)習(xí)存在哪些問題?
2021-10-14 08:20:47
/A2C6.DDPG7.PPO8.SAC1.深度強(qiáng)化學(xué)習(xí)訓(xùn)練場-OpenAI Gym 安裝與使用2.Pytorch安裝與使用3.自動(dòng)駕駛賽車任務(wù)4.月球飛船降落任務(wù)實(shí)操解析與訓(xùn)練一實(shí)驗(yàn):倒立擺和冰壺控制實(shí)踐1.環(huán)境編寫
2022-04-21 14:57:39
摘要與深度學(xué)習(xí)算法的進(jìn)步超越硬件的進(jìn)步,你如何確保算法明天是一個(gè)很好的適合現(xiàn)有的人工智能芯片下發(fā)展?,這些人工智能芯片大多是為今天的人工智能算法算法進(jìn)化,這些人工智能芯片的許多設(shè)計(jì)都可能成為甚至在
2020-11-01 09:28:57
創(chuàng)客們的最酷“玩具” 智能無人機(jī)、自主機(jī)器人、智能攝像機(jī)、自動(dòng)駕駛……今年最令硬件創(chuàng)客們著迷的詞匯,想必就是這些一線“網(wǎng)紅”了。而這些網(wǎng)紅的背后,幾乎都和計(jì)算機(jī)視覺與深度學(xué)習(xí)密切相關(guān)。 深度學(xué)習(xí)
2021-07-19 06:17:28
CPU優(yōu)化深度學(xué)習(xí)框架和函數(shù)庫機(jī)器學(xué)***器
2021-02-22 06:01:02
具有深度學(xué)習(xí)模型的嵌入式系統(tǒng)應(yīng)用程序帶來了巨大的好處。深度學(xué)習(xí)嵌入式系統(tǒng)已經(jīng)改變了各個(gè)行業(yè)的企業(yè)和組織。深度學(xué)習(xí)模型可以幫助實(shí)現(xiàn)工業(yè)流程自動(dòng)化,進(jìn)行實(shí)時(shí)分析以做出決策,甚至可以預(yù)測預(yù)警。這些AI
2021-10-27 06:34:15
一:深度學(xué)習(xí)DeepLearning實(shí)戰(zhàn)時(shí)間地點(diǎn):1 月 15日— 1 月18 日二:深度強(qiáng)化學(xué)習(xí)核心技術(shù)實(shí)戰(zhàn)時(shí)間地點(diǎn): 1 月 27 日— 1 月30 日(第一天報(bào)到 授課三天;提前環(huán)境部署 電腦
2021-01-10 13:42:26
解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實(shí)踐
2020-06-14 22:21:12
AUTOSAR架構(gòu)深度解析本文轉(zhuǎn)載于:AUTOSAR架構(gòu)深度解析AUTOSAR的分層式設(shè)計(jì),用于支持完整的軟件和硬件模塊的獨(dú)立性(Independence),中間RTE(Runtime Environment)作為虛擬功能...
2021-07-28 07:02:13
AUTOSAR架構(gòu)深度解析本文轉(zhuǎn)載于:AUTOSAR架構(gòu)深度解析目錄AUTOSAR架構(gòu)深度解析AUTOSAR分層結(jié)構(gòu)及應(yīng)用軟件層功能應(yīng)用軟件層虛擬功能總線VFB及運(yùn)行環(huán)境RTE基礎(chǔ)軟件層(BSW)層
2021-07-28 07:40:15
C語言深度解析,本資料來源于網(wǎng)絡(luò),對(duì)C語言的學(xué)習(xí)有很大的幫助,有著較為深刻的解析,可能會(huì)對(duì)讀者有一定的幫助。
2023-09-28 07:00:01
的發(fā)展前景較為廣闊,但也面臨一些挑戰(zhàn)。以下是一些關(guān)于 FPGA 在深度學(xué)習(xí)中應(yīng)用前景的觀點(diǎn),僅供參考:
? 優(yōu)勢方面:
? 高度定制化的計(jì)算架構(gòu):FPGA 可以根據(jù)深度學(xué)習(xí)算法的特殊需求進(jìn)行優(yōu)化,例如
2024-09-27 20:53:31
系統(tǒng)等其他行業(yè)也面臨著類似的挑戰(zhàn)。
FPGA 和深度學(xué)習(xí)
FPGA 是可定制的硬件設(shè)備,可對(duì)其組件進(jìn)行調(diào)節(jié),因此可以針對(duì)特定類型的架構(gòu) (如 卷積神經(jīng)網(wǎng)絡(luò)) 進(jìn)行優(yōu)化。其可定制性特征降低了對(duì)電力的需求
2024-03-21 15:19:45
I2C通信設(shè)計(jì)深度解析
2012-08-12 21:31:58
學(xué)習(xí),也就是現(xiàn)在最流行的深度學(xué)習(xí)領(lǐng)域,關(guān)注論壇的朋友應(yīng)該看到了,開發(fā)板試用活動(dòng)中有【NanoPi K1 Plus試用】的申請(qǐng),介紹中NanopiK1plus的高大上優(yōu)點(diǎn)之一就是“可運(yùn)行深度學(xué)習(xí)算法的智能
2018-06-04 22:32:12
本帖最后由 eehome 于 2013-1-5 10:06 編輯
Zstack中串口操作的深度解析(一)歡迎研究ZigBee的朋友和我交流。。。
2012-08-12 21:11:29
免費(fèi)視頻教程:java經(jīng)典面試題深度解析對(duì)于很多初學(xué)者來說,學(xué)好java在后期面試的階段都沒什么經(jīng)驗(yàn),為了讓大家更好的了解面試相關(guān)知識(shí),今天在這里給大家分享了一個(gè)java經(jīng)典面試題深度解析的免費(fèi)視頻
2017-06-20 15:16:08
、并行處理、從目標(biāo)檢測算法嵌入式平臺(tái)的實(shí)現(xiàn)的設(shè)計(jì)要求出發(fā),基于深度學(xué)習(xí)的目標(biāo)檢測算法特點(diǎn),采用軟硬件協(xié)同設(shè)計(jì)思想進(jìn)行總體架構(gòu)設(shè)計(jì),使得可編程邏輯部分可進(jìn)行參數(shù)可配置以處理不同參數(shù)和結(jié)構(gòu)的網(wǎng)絡(luò)層,具有一定
2020-09-25 10:11:49
``1 官方自帶鏡像試用1.1 深度學(xué)習(xí)之圖像分類由于之前的誤操作,SD數(shù)據(jù)被rm掉,后面工作人員重新發(fā)了一份鏡像,前期由于燒寫鏡像方法的錯(cuò)誤導(dǎo)致鏡像一直燒寫不成功,后面更換燒寫軟件為
2020-11-20 15:32:04
的固定架構(gòu)之外進(jìn)行模型優(yōu)化探究。同時(shí),F(xiàn)PGA在單位能耗下性能更強(qiáng),這對(duì)大規(guī)模服務(wù)器部署或資源有限的嵌入式應(yīng)用的研究而言至關(guān)重要。本文從硬件加速的視角考察深度學(xué)習(xí)與FPGA,指出有哪些趨勢和創(chuàng)新使得
2018-08-13 09:33:30
都出現(xiàn)了重大突破。深度學(xué)習(xí)是這些領(lǐng)域中所最常使用的技術(shù),也被業(yè)界大為關(guān)注。然而,深度學(xué)習(xí)模型需要極為大量的數(shù)據(jù)和計(jì)算能力,只有更好的硬件加速條件,才能滿足現(xiàn)有數(shù)據(jù)和模型規(guī)模繼續(xù)擴(kuò)大的需求?! ?FPGA
2019-10-10 06:45:41
深度學(xué)習(xí)是什么意思
2020-11-11 06:58:03
)和網(wǎng)絡(luò)修剪,正在積極研究中,這些方法與 FPGA 非常兼容。也有FPGA供應(yīng)商發(fā)布高速深度學(xué)習(xí)IP,以及配備適合深度學(xué)習(xí)計(jì)算的硬件的SoC型FPGA等利好因素。深度學(xué)習(xí)與FPGA的實(shí)際應(yīng)用還有很長的路
2023-02-17 16:56:59
AUTOSAR架構(gòu)深度解析本文轉(zhuǎn)載于:AUTOSAR架構(gòu)深度解析AUTOSAR的分層式設(shè)計(jì),用于支持完整的軟件和硬件模塊的獨(dú)立性(Independence),中間RTE(Runtime
2021-07-23 08:34:18
學(xué)習(xí)架構(gòu)因?yàn)檫@篇文獻(xiàn)對(duì)于交通領(lǐng)域中的各種問題、方法做了一個(gè)比較清楚的綜述,所以是一篇很有價(jià)值的文獻(xiàn),很適合剛進(jìn)入這個(gè)方向的同學(xué)。
2021-08-31 08:05:01
怎樣從傳統(tǒng)機(jī)器學(xué)習(xí)方法過渡到深度學(xué)習(xí)?
2021-10-14 06:51:23
請(qǐng)問一下什么是深度學(xué)習(xí)?
2021-08-30 07:35:21
在被英特爾收購兩年之后,深度學(xué)習(xí)芯片公司 Nervana 終于準(zhǔn)備將代號(hào)為「Lake Crest」的架構(gòu)轉(zhuǎn)化為實(shí)際的產(chǎn)品了。對(duì)于英特爾來說,現(xiàn)在入局或許有些遲到,英偉達(dá)已經(jīng)占據(jù)深度學(xué)習(xí)芯片市場很長一段時(shí)間了,后者有充分的時(shí)間通過新...
2021-07-26 07:04:35
深度學(xué)習(xí)本質(zhì)上是以一組算法為基礎(chǔ),透過具有多個(gè)處理層、由線性與非線性交易組成的深度繪圖,嘗試在數(shù)據(jù)中建模高層級(jí)抽象。ThinCI架構(gòu)的獨(dú)特之處似乎就在于其處理深度繪圖的方式。
2016-11-03 15:17:55
2135 
在不必要的硬件上。 本文將告訴你如何用最省錢的方式,來搭建一個(gè)高性能深度學(xué)習(xí)系統(tǒng)。 當(dāng)初,在我研究并行深度學(xué)習(xí)過程中,我構(gòu)建了一個(gè)GPU集群 ,所以我需要仔細(xì)選擇硬件。 盡管經(jīng)過了反復(fù)的研究和推理,但當(dāng)我挑選硬件時(shí),我仍然會(huì)犯
2017-09-22 15:17:32
1 深度學(xué)習(xí)與傳統(tǒng)的機(jī)器學(xué)習(xí)最主要的區(qū)別在于隨著數(shù)據(jù)規(guī)模的增加其性能也不斷增長。當(dāng)數(shù)據(jù)很少時(shí),深度學(xué)習(xí)算法的性能并不好。這是因?yàn)?b class="flag-6" style="color: red">深度學(xué)習(xí)算法需要大量的數(shù)據(jù)來完美地理解它。另一方面,在這種情況下,傳統(tǒng)的機(jī)器學(xué)習(xí)算法使用制定的規(guī)則,性能會(huì)比較好。
2017-10-27 16:50:18
2147 
深度強(qiáng)化學(xué)習(xí)DRL自提出以來, 已在理論和應(yīng)用方面均取得了顯著的成果。尤其是谷歌DeepMind團(tuán)隊(duì)基于深度強(qiáng)化學(xué)習(xí)DRL研發(fā)的AlphaGo,將深度強(qiáng)化學(xué)習(xí)DRL成推上新的熱點(diǎn)和高度,成為人工智能歷史上一個(gè)新的里程碑。因此,深度強(qiáng)化學(xué)習(xí)DRL非常值得研究。
2018-06-29 18:36:00
28671 當(dāng)新的應(yīng)用出現(xiàn)時(shí),一般先試著在CPU上跑跑看,如果它更適于GPU和DSP,那么接下來市場就會(huì)轉(zhuǎn)到這兩者。隨著時(shí)間的推移,業(yè)界公司還會(huì)根據(jù)需要開發(fā)ASIC和ASSP。那么,近年來迅速成長的深度學(xué)習(xí)也是沿著相同的順序發(fā)展嗎?
2017-12-22 08:37:18
3464 
近日 Facebook 研究團(tuán)隊(duì)公開一篇 HPCA 2018 論文,作者包括 Caffe 作者賈揚(yáng)清等人,深度揭示了 Facebook 內(nèi)部支持機(jī)器學(xué)習(xí)的硬件和軟件基礎(chǔ)架構(gòu)。Facebook 的幾乎
2017-12-31 00:38:20
5236 
本文談了談gpu的一些重要的硬件組成,就深度學(xué)習(xí)而言,我覺得對(duì)內(nèi)存的需求還是比較大的,core多也并不是能夠全部用上,但現(xiàn)在開源的庫實(shí)在完整,想做卷積運(yùn)算有cudnn,想做卷積神經(jīng)網(wǎng)絡(luò)caffe
2018-01-06 12:01:09
4197 
如何利用深度神經(jīng)網(wǎng)絡(luò)給圖片自動(dòng)上色,本文介紹了開源神經(jīng)網(wǎng)絡(luò)圖片上色技術(shù),解析深度學(xué)習(xí)會(huì)自動(dòng)上色的核心技術(shù),并且?guī)酌腌娋蛯?shí)現(xiàn)PS幾個(gè)月的效果
2018-01-10 13:21:52
13883 近年來,深度學(xué)習(xí)的發(fā)展勢頭迅猛,要跟上深度學(xué)習(xí)的進(jìn)步速度變得越來越困難了。幾乎每一天都有關(guān)于深度學(xué)習(xí)的創(chuàng)新,而大部分的深度學(xué)習(xí)創(chuàng)新都隱藏在那些發(fā)表于ArXiv和Spinger等研究論文中。
簡潔起見,本文中只介紹了計(jì)算機(jī)視覺領(lǐng)域內(nèi)比較成功的深度學(xué)習(xí)架構(gòu)。
2018-01-11 10:49:06
10098 深度學(xué)習(xí)芯片領(lǐng)域的競爭從未停止過,2018年將開啟深度學(xué)習(xí)硬件大戰(zhàn),在這場戰(zhàn)局中英偉達(dá)、AMD、英特爾誰能笑到最后。
2018-01-11 13:19:02
5267 模型驅(qū)動(dòng)的深度學(xué)習(xí)方法近年來,深度學(xué)習(xí)在人工智能領(lǐng)域一系列困難問題上取得了突破性成功應(yīng)用。
2018-01-24 11:30:13
5356 
幾乎所有深度學(xué)習(xí)的研究者都在使用GPU,但是對(duì)比深度學(xué)習(xí)硬鑒方案,ASIC、FPGA、GPU三種究竟哪款更被看好?主要是認(rèn)清對(duì)深度學(xué)習(xí)硬件平臺(tái)的要求。
2018-02-02 15:21:40
10933 
淺談深度學(xué)習(xí)的架構(gòu),主要可分為訓(xùn)練(Training)與推論(Inference)兩個(gè)階段。簡單來說,就是訓(xùn)練機(jī)器學(xué)習(xí),以及讓機(jī)器展現(xiàn)學(xué)習(xí)成果。再進(jìn)一步談深度學(xué)習(xí)的運(yùn)算架構(gòu),NVIDIA解決方案架構(gòu)經(jīng)理康勝閔簡單統(tǒng)整,定義出幾個(gè)步驟。
2018-02-09 08:48:31
3319 近年來,深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)中比較火的一種方法出現(xiàn)在我們面前,但是和非深度學(xué)習(xí)的機(jī)器學(xué)習(xí)相比(我將深度學(xué)習(xí)歸于機(jī)器學(xué)習(xí)的領(lǐng)域內(nèi)),還存在著幾點(diǎn)很大的不同,具體來說,有以下幾點(diǎn).
2018-05-02 10:30:00
4657 日本富士通也針對(duì)AI及HPC應(yīng)用自行開發(fā)特殊應(yīng)用芯片(ASIC),包括專為AI深度學(xué)習(xí)量身打造的DLU深度學(xué)習(xí)專用芯片,以及針對(duì)新一代Post京(Post-K)超級(jí)電腦設(shè)計(jì)的ARM架構(gòu)HPC芯片。
2018-05-24 10:39:45
4926 本深度學(xué)習(xí)是什么?了解深度學(xué)習(xí)難嗎?讓你快速了解深度學(xué)習(xí)的視頻講解本文檔視頻讓你4分鐘快速了解深度學(xué)習(xí)
深度學(xué)習(xí)的概念源于人工智能的人工神經(jīng)網(wǎng)絡(luò)的研究。含多隱層的多層感知器就是一種深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發(fā)現(xiàn)數(shù)據(jù)的分布式特征表示。
2018-08-23 14:36:16
16 新加坡國立大學(xué)在讀博士生趙健分享了“基于深度學(xué)習(xí)的任務(wù)圖像理解:人臉識(shí)別與人物解析”,介紹了他博士期間在這個(gè)領(lǐng)域的多個(gè)代表工作—DA-GAN、PIM和3D-PIM,ICCV 2017
2018-09-02 10:27:12
6614 DBNs在每一層中利用用于表示的無監(jiān)督學(xué)習(xí)RBMs。Bengio et al paper 探討和對(duì)比了RBMs和auto-encoders(通過一個(gè)表示的瓶頸內(nèi)在層預(yù)測輸入的神經(jīng)網(wǎng)絡(luò)
2018-10-07 15:13:00
7051 深度學(xué)習(xí)到底有多熱,這里我就不再強(qiáng)調(diào)了,也因此有很多人關(guān)心這樣的幾個(gè)問題,“適不適合轉(zhuǎn)行深度學(xué)習(xí)(機(jī)器學(xué)習(xí))”,“怎么樣轉(zhuǎn)行深度學(xué)習(xí)(機(jī)器學(xué)習(xí))”,“轉(zhuǎn)行深度學(xué)習(xí)需要哪些入門材料?”等等。
2018-10-19 14:07:19
3251 深度學(xué)習(xí)這一想法本身并不新穎,早在1959年就被討論過。當(dāng)時(shí)受限于算法、硬件水平及數(shù)據(jù)量的限制,沒有得到很好的發(fā)展。近60年,隨著硬件水平的不斷提升,數(shù)據(jù)量的爆炸式增長,深度學(xué)習(xí)再一次煥發(fā)出勃勃生機(jī),并展現(xiàn)出優(yōu)異的性能。
2019-07-29 18:21:24
2395 研究的發(fā)展將如何影響未來硬件架構(gòu)。如今,只要在網(wǎng)絡(luò)上搜索“深度學(xué)習(xí)”算法,都會(huì)顯示很多相關(guān)的信息,在過去的數(shù)十年里,人工智能已經(jīng)越來越成功地應(yīng)用于生物識(shí)別、語音識(shí)別、視頻識(shí)別、翻譯等。國內(nèi)更是誕生了諸如
2019-07-29 18:21:24
1781 本文以 7 種架構(gòu)范例簡要介紹深度學(xué)習(xí),每種范例均提供 TensorFlow 教程鏈接。
2019-02-21 15:53:22
11596 
在信號(hào)處理、圖像處理和其它工程/科學(xué)領(lǐng)域,卷積都是一種使用廣泛的技術(shù)。在深度學(xué)習(xí)領(lǐng)域,卷積神經(jīng)網(wǎng)絡(luò)(CNN)這種模型架構(gòu)就得名于這種技術(shù)。但是,深度學(xué)習(xí)領(lǐng)域的卷積本質(zhì)上是信號(hào)/圖像處理領(lǐng)域內(nèi)的互相關(guān)(cross-correlation)。這兩種操作之間存在細(xì)微的差別。
2019-02-26 10:01:05
3944 
本文從硬件加速的視角考察深度學(xué)習(xí)與FPGA,指出有哪些趨勢和創(chuàng)新使得這些技術(shù)相互匹配,并激發(fā)對(duì)FPGA如何幫助深度學(xué)習(xí)領(lǐng)域發(fā)展的探討。
2019-06-28 17:31:46
7493 如果你需要深度學(xué)習(xí)模型,那么 PyTorch 和 TensorFlow 都是不錯(cuò)的選擇。
并非每個(gè)回歸或分類問題都需要通過深度學(xué)習(xí)來解決。甚至可以說,并非每個(gè)回歸或分類問題都需要通過機(jī)器學(xué)習(xí)來解決。畢竟,許多數(shù)據(jù)集可以用解析方法或簡單的統(tǒng)計(jì)過程進(jìn)行建模。
2019-09-14 10:57:00
3931 在計(jì)算機(jī)視覺或自然語言處理中使用深度學(xué)習(xí),如今就好像魚在水中生活一樣必要而且自然。深度學(xué)習(xí)徹底改變了機(jī)器學(xué)習(xí),它現(xiàn)在幾乎存在于機(jī)器學(xué)習(xí)的所有領(lǐng)域,甚至那些不太起眼的地方,比如在時(shí)間序列分析或需求預(yù)測也可以看到它的身影。
2019-11-24 07:33:00
2384 SDR將寬帶前端和功能強(qiáng)大的處理器相結(jié)合,為信號(hào)分析應(yīng)用提供了理想的平臺(tái)。人工智能和深度學(xué)習(xí)技術(shù)可以訓(xùn)練系統(tǒng),使系統(tǒng)檢測信號(hào)的速度遠(yuǎn)超手工編寫的算法。了解DeepSig如何將COTS SDR與人工智能和深度學(xué)習(xí)相結(jié)合。
2019-11-26 14:18:28
6538 
深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)的一個(gè)分支,其學(xué)習(xí)方法可以分為監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)。
2020-01-30 09:29:00
3912 
深度學(xué)習(xí)DL是機(jī)器學(xué)習(xí)中一種基于對(duì)數(shù)據(jù)進(jìn)行表征學(xué)習(xí)的方法。深度學(xué)習(xí)DL有監(jiān)督和非監(jiān)督之分,都已經(jīng)得到廣泛的研究和應(yīng)用。
2020-01-24 10:46:00
5623 在Cortex,用戶推出了基于深度學(xué)習(xí)的新一代產(chǎn)品,與以前不同的是,這些產(chǎn)品并非都是使用獨(dú)一無二的模型架構(gòu)構(gòu)建的。
2020-03-19 20:08:58
950 的封閉式模型,但是這些模型無法準(zhǔn)確捕捉到真實(shí)效果;而且對(duì)系統(tǒng)的優(yōu)化也非常零碎,僅能優(yōu)化單個(gè)組件,無法進(jìn)行完整的端到端優(yōu)化。在過去幾年里,人工智能已經(jīng)取得了長足的進(jìn)步,尤其是機(jī)器學(xué)習(xí)技術(shù)中的深度學(xué)習(xí)。為了解決
2020-11-16 10:38:00
1 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)與神經(jīng)網(wǎng)絡(luò)、人工智能、圖形化建模、優(yōu)化、模式識(shí)別和信號(hào)處理等技術(shù)融合后產(chǎn)生的一個(gè)領(lǐng)域。
2020-11-05 09:31:19
5356 深度學(xué)習(xí)算法現(xiàn)在是圖像處理軟件庫的組成部分。在他們的幫助下,可以學(xué)習(xí)和訓(xùn)練復(fù)雜的功能;但他們的應(yīng)用也不是萬能的。 “機(jī)器學(xué)習(xí)”和“深度學(xué)習(xí)”有什么區(qū)別? 在機(jī)器視覺和深度學(xué)習(xí)中,人類視覺的力量和對(duì)視
2021-03-12 16:11:00
8984 
這是一款便攜式獨(dú)立神經(jīng)假肢系統(tǒng),戴上之后,原本截掉手臂、失去手指的患者,可以像正常人一樣玩電子游戲。 這不是簡單的機(jī)械手,而是深度學(xué)習(xí)和機(jī)械臂硬件的結(jié)合。近年來,深度學(xué)習(xí)在分析、解釋和解碼生物醫(yī)學(xué)
2021-05-07 09:54:00
1995 2021年華為開發(fā)者大會(huì)亮點(diǎn)紛呈 OpenHarmony、智能硬件、HarmonyOS架構(gòu)解析 今年的華為開發(fā)者大會(huì)2021(Together)在東莞松山湖舉辦,HarmonyOS 3開發(fā)者預(yù)覽版
2021-10-23 20:48:59
5324 
在玩轉(zhuǎn)智能硬件(一)和(二)中,我們安裝好Jetson Nano系統(tǒng)并配置好基本環(huán)境,接下來開始搭建深度學(xué)習(xí)開發(fā)環(huán)境。
2022-01-26 18:18:34
2 學(xué)習(xí)中的“深度”一詞表示用于識(shí)別數(shù)據(jù)模式的多層算法或神經(jīng)網(wǎng)絡(luò)。DL 高度靈活的架構(gòu)可以直接從原始數(shù)據(jù)中學(xué)習(xí),這類似于人腦的運(yùn)作方式,獲得更多數(shù)據(jù)后,其預(yù)測準(zhǔn)確度也將隨之提升。? ? 此外,深度學(xué)習(xí)是在語音識(shí)別、語言翻譯和
2022-04-01 10:34:10
13161 薦語文章列舉出了近年來深度學(xué)習(xí)的重要研究成果,從方法、架構(gòu),以及正則化、優(yōu)化技術(shù)方面進(jìn)行概述。對(duì)于剛?cè)腴T的深度學(xué)習(xí)新手是一份不錯(cuò)的參考資料,在形成基本學(xué)術(shù)界圖景、指導(dǎo)文獻(xiàn)查找等方面都能提供幫助。
2022-08-19 11:01:26
1939 ASPICE 和26262中ASPICE 和26262中的軟件架構(gòu)解析的軟件架構(gòu)解析
2022-10-25 11:53:34
1292 電子發(fā)燒友網(wǎng)報(bào)道(文/周凱揚(yáng))深度學(xué)習(xí)硬件在AI時(shí)代已經(jīng)引領(lǐng)了不少設(shè)計(jì)創(chuàng)新,無論是簡單的邊緣推理,還是大規(guī)模自然語言模型的訓(xùn)練,都有了性能上的突破。作為業(yè)內(nèi)在深度學(xué)習(xí)上投入最多的公司之一,英偉達(dá)
2022-12-05 07:10:02
980 電子發(fā)燒友網(wǎng)站提供《bAIwatch、深度學(xué)習(xí)和沖浪開源硬件.zip》資料免費(fèi)下載
2022-12-06 14:12:06
0 人工智能的概念在1956年就被提出,如今終于走入現(xiàn)實(shí),離不開一種名為“深度學(xué)習(xí)”的技術(shù)。深度學(xué)習(xí)的運(yùn)作模式,如同一場傳話游戲。給神經(jīng)網(wǎng)絡(luò)輸入數(shù)據(jù),對(duì)數(shù)據(jù)的特征進(jìn)行描述,在神經(jīng)網(wǎng)絡(luò)中層層傳遞,最終再
2023-01-14 23:34:43
1588 
深度學(xué)習(xí)可以學(xué)習(xí)視覺輸入的模式,以預(yù)測組成圖像的對(duì)象類。用于圖像處理的主要深度學(xué)習(xí)架構(gòu)是卷積神經(jīng)網(wǎng)絡(luò)(CNN),或者是特定的CNN框架,如AlexNet、VGG、Inception和ResNet。計(jì)算機(jī)視覺的深度學(xué)習(xí)模型通常在專門的圖形處理單元(GPU)上訓(xùn)練和執(zhí)行,以減少計(jì)算時(shí)間。
2023-05-05 11:35:28
2022 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)類型,該類型的模型直接從圖像、文本或聲音中學(xué)習(xí)執(zhí)行分類任務(wù)。通常使用神經(jīng)網(wǎng)絡(luò)架構(gòu)實(shí)現(xiàn)深度學(xué)習(xí)?!?b class="flag-6" style="color: red">深度”一詞是指網(wǎng)絡(luò)中的層數(shù) — 層數(shù)越多,網(wǎng)絡(luò)越深。傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)只包含 2 層或 3 層,而深度網(wǎng)絡(luò)可能有幾百層。
2023-05-29 09:16:00
1 可擴(kuò)展且保密的深度學(xué)習(xí)
2023-06-28 16:09:14
534 
深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)的區(qū)別在于隱藏層的深度。一般來說,神經(jīng)網(wǎng)絡(luò)的隱藏層要比實(shí)現(xiàn)深度學(xué)習(xí)的系統(tǒng)淺得多,而深度學(xué)習(xí)的在隱藏層可以有很多層。
2023-07-28 10:44:27
981 
深度學(xué)習(xí)算法簡介 深度學(xué)習(xí)算法是什么?深度學(xué)習(xí)算法有哪些?? 作為一種現(xiàn)代化、前沿化的技術(shù),深度學(xué)習(xí)已經(jīng)在很多領(lǐng)域得到了廣泛的應(yīng)用,其能夠不斷地從數(shù)據(jù)中提取最基本的特征,從而對(duì)大量的信息進(jìn)行機(jī)器學(xué)習(xí)
2023-08-17 16:02:56
10416 等領(lǐng)域,以及交叉學(xué)科領(lǐng)域,如生物信息學(xué)、機(jī)器人技術(shù)和社會(huì)網(wǎng)絡(luò)分析。 深度學(xué)習(xí)的基礎(chǔ)可以追溯到20世紀(jì)40年代,當(dāng)時(shí)Hinton等人提出的神經(jīng)網(wǎng)絡(luò)理論為深度學(xué)習(xí)的提出奠定了基礎(chǔ)。然而,在那個(gè)時(shí)代,由于硬件和數(shù)據(jù)的限制,深度
2023-08-17 16:02:59
3480 什么是深度學(xué)習(xí)算法?深度學(xué)習(xí)算法的應(yīng)用 深度學(xué)習(xí)算法被認(rèn)為是人工智能的核心,它是一種模仿人類大腦神經(jīng)元的計(jì)算模型。深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一種變體,主要通過變換各種架構(gòu)來對(duì)大量數(shù)據(jù)進(jìn)行學(xué)習(xí)以及分類處理
2023-08-17 16:03:04
3074 深度學(xué)習(xí)框架是什么?深度學(xué)習(xí)框架有哪些?? 深度學(xué)習(xí)框架是一種軟件工具,它可以幫助開發(fā)者輕松快速地構(gòu)建和訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)模型。與手動(dòng)編寫代碼相比,深度學(xué)習(xí)框架可以大大減少開發(fā)和調(diào)試的時(shí)間和精力,并提
2023-08-17 16:03:09
3886 深度學(xué)習(xí)框架的作用是什么 深度學(xué)習(xí)是一種計(jì)算機(jī)技術(shù),它利用人工神經(jīng)網(wǎng)絡(luò)來模擬人類的學(xué)習(xí)過程。由于其高度的精確性和精度,深度學(xué)習(xí)已成為現(xiàn)代計(jì)算機(jī)科學(xué)領(lǐng)域的重要工具。然而,要在深度學(xué)習(xí)中實(shí)現(xiàn)高度復(fù)雜
2023-08-17 16:10:57
2408 深度學(xué)習(xí)算法庫框架學(xué)習(xí) 深度學(xué)習(xí)是一種非常強(qiáng)大的機(jī)器學(xué)習(xí)方法,它可以用于許多不同的應(yīng)用程序,例如計(jì)算機(jī)視覺、語言處理和自然語言處理。然而,實(shí)現(xiàn)深度學(xué)習(xí)技術(shù)需要使用一些算法庫框架。在本文中,我們將探討
2023-08-17 16:11:07
1407 深度學(xué)習(xí)框架連接技術(shù) 深度學(xué)習(xí)框架是一個(gè)能夠幫助機(jī)器學(xué)習(xí)和人工智能開發(fā)人員輕松進(jìn)行模型訓(xùn)練、優(yōu)化及評(píng)估的軟件庫。深度學(xué)習(xí)框架連接技術(shù)則是需要使用深度學(xué)習(xí)模型的應(yīng)用程序必不可少的技術(shù),通過連接技術(shù)
2023-08-17 16:11:16
1355 深度學(xué)習(xí)框架和深度學(xué)習(xí)算法教程 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)領(lǐng)域中的一個(gè)重要分支,多年來深度學(xué)習(xí)一直在各個(gè)領(lǐng)域的應(yīng)用中發(fā)揮著極其重要的作用,成為了人工智能技術(shù)的重要組成部分。許多深度學(xué)習(xí)算法和框架提供了
2023-08-17 16:11:26
1829 機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的區(qū)別 隨著人工智能技術(shù)的不斷發(fā)展,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)已經(jīng)成為大家熟知的兩個(gè)術(shù)語。雖然它們都屬于人工智能技術(shù)的研究領(lǐng)域,但它們之間有很大的差異。本文將詳細(xì)介紹機(jī)器學(xué)習(xí)和深度學(xué)習(xí)
2023-08-17 16:11:40
5419 機(jī)器學(xué)習(xí)和深度學(xué)習(xí)是當(dāng)今最流行的人工智能(AI)技術(shù)之一。這兩種技術(shù)都有助于在不需要人類干預(yù)的情況下讓計(jì)算機(jī)自主學(xué)習(xí)和改進(jìn)預(yù)測模型。本文將探討機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的概念以及二者之間的區(qū)別。
2023-08-28 17:31:09
2257 隨著深度學(xué)習(xí)技術(shù)的興起,計(jì)算機(jī)視覺的許多傳統(tǒng)領(lǐng)域都取得了突破性進(jìn)展,例如目標(biāo)的檢測、識(shí)別和分類等領(lǐng)域。近年來,研究人員開始在視覺SLAM算法中引入深度學(xué)習(xí)技術(shù),使得深度學(xué)習(xí)SLAM系統(tǒng)獲得了迅速發(fā)展,并且比傳統(tǒng)算法展現(xiàn)出更高的精度和更強(qiáng)的環(huán)境適應(yīng)性。
2024-04-23 17:18:36
2157 
深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Network, DNN)作為機(jī)器學(xué)習(xí)領(lǐng)域中的一種重要技術(shù),以其強(qiáng)大的特征學(xué)習(xí)能力和非線性建模能力,在多個(gè)領(lǐng)域取得了顯著成果。DNN的核心在于其多層結(jié)構(gòu),通過
2024-07-09 11:00:11
5053 設(shè)計(jì)的硬件加速器,它在深度學(xué)習(xí)中的應(yīng)用日益廣泛。 1. NPU的基本概念 NPU是一種專門針對(duì)深度學(xué)習(xí)算法優(yōu)化的處理器,它與傳統(tǒng)的CPU和GPU有所不同。NPU通常具有高度并行的處理能力,能夠高效地執(zhí)行深度學(xué)習(xí)中的大規(guī)模矩陣運(yùn)算和數(shù)據(jù)傳輸。這種設(shè)計(jì)使得NPU在處理深度學(xué)習(xí)任務(wù)時(shí),
2024-11-14 15:17:39
3175 人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢,導(dǎo)致戰(zhàn)爭形式和模式發(fā)生重大變化。本文將概述深度學(xué)習(xí)的歷史和架構(gòu)。然后,回顧了相關(guān)工作
2025-02-14 11:15:34
878 電鴻系統(tǒng)技術(shù)架構(gòu)解析,觸覺智能推出多款電鴻適配硬件方案
2025-02-26 16:21:01
1578 
?? 顛覆傳統(tǒng)架構(gòu),定義行業(yè)未來 深度解析軟件定義車輛(SDV)如何通過集中式軟件管理,實(shí)現(xiàn)硬件與軟件解耦,徹底解決傳統(tǒng)域架構(gòu)的碎片化難題。 揭秘區(qū)域控制架構(gòu)如何降低30%開發(fā)成本,支持跨車型、跨配置的無縫擴(kuò)展,為OEM打造模塊化智能
2025-04-27 11:58:00
1187 GPU架構(gòu)深度解析從圖形處理到通用計(jì)算的進(jìn)化之路圖形處理單元(GPU),作為現(xiàn)代計(jì)算機(jī)中不可或缺的一部分,已經(jīng)從最初的圖形渲染專用處理器,發(fā)展成為強(qiáng)大的并行計(jì)算引擎,廣泛應(yīng)用于人工智能、科學(xué)計(jì)算
2025-05-30 10:36:40
1664 
評(píng)論