曰本美女∴一区二区特级A级黄色大片, 国产亚洲精品美女久久久久久2025, 页岩实心砖-高密市宏伟建材有限公司, 午夜小视频在线观看欧美日韩手机在线,国产人妻奶水一区二区,国产玉足,妺妺窝人体色WWW网站孕妇,色综合天天综合网中文伊,成人在线麻豆网观看

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示
創(chuàng)作
電子發(fā)燒友網(wǎng)>電子資料下載>電子論文>模擬數(shù)字論文>關(guān)于馬爾科夫隨機(jī)場(chǎng)的文獻(xiàn)

關(guān)于馬爾科夫隨機(jī)場(chǎng)的文獻(xiàn)

2017-07-29 | pdf | 3922KB | 次下載 | 1積分

資料介紹

關(guān)于馬爾科夫隨機(jī)場(chǎng)的文獻(xiàn),英文文獻(xiàn),網(wǎng)上可以找到免費(fèi)對(duì)應(yīng)程序

  1 Introduction Many problems in early vision involve assigning each pixel a label, where the labels represent some local quantity such as disparity. Such pixel labeling problems are naturally represented in terms of energy minimization, where the energy function has two terms: one term penalizes solutions that are inconsistent with the observed data, while the other term enforces some kind of spatial coherence. One of the reasons this framework is so popular is that it can be justified in terms of maximum a posteriori estimation of a Markov Random Field, as described in [1, 2]。 Despite the elegance and power of the energy minimization approach, its early adoption was slowed by computational considerations. The algorithms that were originally used, such as ICM [1] or simulated annealing [3, 4], proved to be extremely inefficient. In the last few years, energy minimization approaches have had a renaissance, primarily due to powerful new optimization algorithms such as graph cuts [5, 6] and Loopy Belief Propagation (LBP) [7, 8]。 The results, especially in stereo, have been dramatic; according to the widely-used Middlebury stereo benchmarks [9], almost all the top-performing stereo methods rely on graph cuts or LBP. Moreover, these methods give substantially more accurate results than were previously possible. Simultaneously, the range of applications of pixel labeling problems has also expanded dramatically, moving from early applications such as image restoration [1], texture modeling [10], image labeling [11], and stereo matching [4, 5], to applications such as interactive photo segmentation [12–14] and the automatic placement of seams in digital photomontages [15]。 Relatively little attention has been paid, however, to the relative performance of various optimization algorithms. Among the few exceptions is [16], which compared graph cuts and LBP, and [17], which compared several different max flow algorithms for graph cuts. While it is generally accepted that algorithms such as graph cuts are a huge improvement over older techniques such as simulated annealing, less is known about the efficiency vs. accuracy tradeoff amongst more recently developed algorithms. In this paper, we evaluate a number of different energy minimization algorithms for pixel labeling problems. We propose a number of benchmark problems for energy minimization and use these benchmarks to compare several different energy minimization methods. Since much of the work in energy minimization has been motivated by pixel labeling problems over 2D grids, we have restricted our attention to problems with this simple topology. (The extension of our work to more general topologies, such as 3D, is straightforward.) This paper is organized as follows. In section 2 we give a precise description of the energy functions that we consider, and present a simple but general software interface to describe such energy functions and to call an arbitrary energy minimization algorithm. In section 3 we describe the different energy minimization algorithms that we have implemented, and in section 4 we present our set of benchmarks. In section 5 we provide our experimental comparison of the different energy minimization methods. Finally, in section 6 we discuss the conclusions that can be drawn from our study.
關(guān)于馬爾科夫隨機(jī)場(chǎng)的文獻(xiàn)

下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評(píng)論

查看更多

下載排行

本周

  1. 1RA4L1硬件手冊(cè)
  2. 21.89 MB  |  2次下載  |  免費(fèi)
  3. 2RA4L1_SENSOR-V1原理圖
  4. 754.36 KB  |  2次下載  |  免費(fèi)
  5. 3RA4L1數(shù)據(jù)手冊(cè)
  6. 1.88 MB  |  1次下載  |  免費(fèi)
  7. 4電子元件FCO-6P-PJ系列超低相噪低抖動(dòng)晶體振蕩器:規(guī)格參數(shù)與應(yīng)用領(lǐng)域介紹
  8. 3.66 MB  |  次下載  |  免費(fèi)
  9. 5單片機(jī)c語(yǔ)言編程實(shí)例大全
  10. 0.66 MB   |  次下載  |  1 積分
  11. 6DS-AN5V PB00 CN-V1
  12. 610.46 KB  |  次下載  |  免費(fèi)
  13. 7電橋前端共模電感有效抑制干擾電路分享
  14. 0.06 MB   |  次下載  |  免費(fèi)
  15. 8蘋果A1465 820-00164圖紙
  16. 1.41 MB   |  次下載  |  免費(fèi)

本月

  1. 1晶體三極管的電流放大作用詳細(xì)說(shuō)明
  2. 0.77 MB   |  32次下載  |  2 積分
  3. 2九陽(yáng)豆?jié){機(jī)高清原理圖
  4. 2.47 MB   |  28次下載  |  1 積分
  5. 3雙極型三極管放大電路的三種基本組態(tài)的學(xué)習(xí)課件免費(fèi)下載
  6. 4.03 MB   |  25次下載  |  1 積分
  7. 4AIWA HS-J303 MKⅡ維修手冊(cè)
  8. 22.47 MB   |  24次下載  |  10 積分
  9. 5多級(jí)放大電路的學(xué)習(xí)課件免費(fèi)下載
  10. 1.81 MB   |  21次下載  |  2 積分
  11. 6AIWA HS-J202/HS-J202M/HS-J800維修手冊(cè)
  12. 13.60 MB   |  16次下載  |  10 積分
  13. 7人形機(jī)器人電機(jī)驅(qū)動(dòng)和傳感報(bào)告
  14. 4.27 MB   |  13次下載  |  免費(fèi)
  15. 8Altium Designer元件庫(kù)
  16. 17.11 MB   |  9次下載  |  免費(fèi)

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935127次下載  |  10 積分
  3. 2開(kāi)源硬件-PMP21529.1-4 開(kāi)關(guān)降壓/升壓雙向直流/直流轉(zhuǎn)換器 PCB layout 設(shè)計(jì)
  4. 1.48MB  |  420063次下載  |  10 積分
  5. 3Altium DXP2002下載入口
  6. 未知  |  233089次下載  |  10 積分
  7. 4電路仿真軟件multisim 10.0免費(fèi)下載
  8. 340992  |  191382次下載  |  10 積分
  9. 5十天學(xué)會(huì)AVR單片機(jī)與C語(yǔ)言視頻教程 下載
  10. 158M  |  183338次下載  |  10 積分
  11. 6labview8.5下載
  12. 未知  |  81586次下載  |  10 積分
  13. 7Keil工具M(jìn)DK-Arm免費(fèi)下載
  14. 0.02 MB  |  73814次下載  |  10 積分
  15. 8LabVIEW 8.6下載
  16. 未知  |  65988次下載  |  10 積分