chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

電子發(fā)燒友App

硬聲App

掃碼添加小助手

加入工程師交流群

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>模擬技術(shù)>一種新的基于改進(jìn)的ADALINE神經(jīng)網(wǎng)絡(luò)的DTMF解碼器方案

一種新的基于改進(jìn)的ADALINE神經(jīng)網(wǎng)絡(luò)的DTMF解碼器方案

收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦
熱點(diǎn)推薦

DTMF解碼器原理是什么?

DTMF 解碼器原理
2023-10-27 08:29:53

DTMF撥號(hào)解碼器有什么優(yōu)點(diǎn)?

及其它方面有著廣泛的應(yīng)用。通常DTMF信號(hào)的檢測(cè)采用專用芯片或DSP來(lái)實(shí)現(xiàn),但其成本較高。本文介紹了一種低成本的基于MSP430F133的DTMF撥號(hào)解碼器實(shí)現(xiàn)方案。 MSP430F133是TI的
2019-08-22 07:01:24

一種基于經(jīng)優(yōu)化算法優(yōu)化過(guò)的神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)FIR濾波的方法介紹

定程度上改善了傳統(tǒng)方法的局限性,但這些方法自身也存在著些不足。之后,曾喆昭等人提出了一種基于余弦基神經(jīng)網(wǎng)絡(luò)的算法,給出了該算法的收斂條件,并將其應(yīng)用到高階多通帶FIR濾波中,用實(shí)例說(shuō)明了該算法在精度
2019-07-08 07:16:17

一種基于高效采樣算法的時(shí)序圖神經(jīng)網(wǎng)絡(luò)系統(tǒng)介紹

圖數(shù)據(jù)是一種非結(jié)構(gòu)化的數(shù)據(jù),但能夠蘊(yùn)含很多結(jié)構(gòu)化數(shù)據(jù)中無(wú)法蘊(yùn)含的信息。圖數(shù)據(jù)無(wú)處不在,世界上大部分?jǐn)?shù)據(jù)都能夠用圖數(shù)據(jù)來(lái)表達(dá)。為了高效的提取圖特征,圖神經(jīng)網(wǎng)絡(luò)一種非常重要的圖特征提取方式。圖神經(jīng)網(wǎng)絡(luò)
2022-09-28 10:34:13

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

  第1章 概述  1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展  1.2 生物神經(jīng)元  1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成  第2章人工神經(jīng)網(wǎng)絡(luò)基本模型  2.1 MP模型  2.2 感知模型  2.3 自適應(yīng)線性
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡(luò)解決方案讓自動(dòng)駕駛成為現(xiàn)實(shí)

、成本及功耗的要求。輕型嵌入式神經(jīng)網(wǎng)絡(luò)卷積式神經(jīng)網(wǎng)絡(luò) (CNN) 的應(yīng)用可分為三個(gè)階段:訓(xùn)練、轉(zhuǎn)化及 CNN 在生產(chǎn)就緒解決方案中的執(zhí)行。要想獲得個(gè)高性價(jià)比、針對(duì)大規(guī)模車輛應(yīng)用的高效結(jié)果,必須在每階段
2017-12-21 17:11:34

AI知識(shí)科普 | 從無(wú)人相信到萬(wàn)人追捧的神經(jīng)網(wǎng)絡(luò)

工智能。幾乎是夜間,神經(jīng)網(wǎng)絡(luò)技術(shù)從無(wú)人相信變成了萬(wàn)人追捧。神經(jīng)網(wǎng)絡(luò)之父Hiton1、人工神經(jīng)網(wǎng)絡(luò)是什么?人工神經(jīng)網(wǎng)絡(luò):是一種模仿動(dòng)物神經(jīng)網(wǎng)絡(luò)行為特征,進(jìn)行分布式并行信息處理的算法數(shù)學(xué)模型。這種網(wǎng)絡(luò)依靠系統(tǒng)
2018-06-05 10:11:50

PSOC 3-5也可以用DTMF解碼器嗎?

你好,我在PSoC1中看到了個(gè)DTMF解碼器。PSOC 3-5也可用嗎?我看了下PSoC4,我發(fā)現(xiàn)了它。Br丹尼爾 以上來(lái)自于百度翻譯 以下為原文Hi, I saw that in Psoc1
2019-07-22 14:58:32

labview BP神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)

請(qǐng)問(wèn):我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒(méi)有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08

《 AI加速架構(gòu)設(shè)計(jì)與實(shí)現(xiàn)》+第章卷積神經(jīng)網(wǎng)絡(luò)觀后感

連接塊是一種模塊,通常用于深度卷積神經(jīng)網(wǎng)絡(luò)中,特別是在殘差網(wǎng)絡(luò)(Residual Network,ResNet)中廣泛使用,也是我比較熟悉的。組卷積塊是一種卷積神經(jīng)網(wǎng)絡(luò)中的模塊,其主要目的是將卷積操作
2023-09-11 20:34:01

【PYNQ-Z2申請(qǐng)】基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速

探索整個(gè)過(guò)程中資源利用的優(yōu)化使整個(gè)過(guò)程更加節(jié)能高效預(yù)計(jì)成果:1、在PYNQ上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)2、對(duì)以往實(shí)現(xiàn)結(jié)構(gòu)進(jìn)行優(yōu)化3、為卷積神經(jīng)網(wǎng)絡(luò)網(wǎng)路在硬件上,特別是在FPGA實(shí)現(xiàn)提供一種優(yōu)化思路和方案
2018-12-19 11:37:22

【PYNQ-Z2試用體驗(yàn)】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)

學(xué)習(xí)和認(rèn)知科學(xué)領(lǐng)域,是一種模仿生物神經(jīng)網(wǎng)絡(luò)(動(dòng)物的中樞神經(jīng)系統(tǒng),特別是大腦)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計(jì)算模型,用于對(duì)函數(shù)進(jìn)行估計(jì)或近似。神經(jīng)網(wǎng)絡(luò)由大量的人工神經(jīng)元聯(lián)結(jié)進(jìn)行計(jì)算。大多數(shù)情況下人工神經(jīng)網(wǎng)絡(luò)
2019-03-03 22:10:19

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

一種常用的無(wú)監(jiān)督學(xué)習(xí)策略,在使用改策略時(shí),網(wǎng)絡(luò)的輸出神經(jīng)元相互競(jìng)爭(zhēng),每時(shí)刻只有個(gè)競(jìng)爭(zhēng)獲勝的神經(jīng)元激活。ART神經(jīng)網(wǎng)絡(luò)由比較層、識(shí)別層、識(shí)別閾值、重置模塊構(gòu)成。其中比較層負(fù)責(zé)接收輸入樣本,并將其傳遞
2019-07-21 04:30:00

人工神經(jīng)網(wǎng)絡(luò)原理及下載

人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識(shí)過(guò)程而開(kāi)發(fā)出的一種算法。假如我們現(xiàn)在只有些輸入和相應(yīng)的輸出,而對(duì)如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過(guò)程看成是個(gè)“網(wǎng)絡(luò)”,通過(guò)不斷地給
2008-06-19 14:40:42

人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決些非線性,非平穩(wěn),復(fù)雜的實(shí)際問(wèn)題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡(jiǎn)單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

分享一種400×25×2的三層BP神經(jīng)網(wǎng)絡(luò)

本文首先簡(jiǎn)單的選取了少量的樣本并進(jìn)行樣本歸化,這樣就得到了可供訓(xùn)練的訓(xùn)練集和測(cè)試集。然后訓(xùn)練了400×25×2的三層BP神經(jīng)網(wǎng)絡(luò),最后對(duì)最初步的模型進(jìn)行了誤差分析并找到了一種效果顯著的提升方法!
2021-07-12 06:49:37

分享一種DTMF信號(hào)檢測(cè)工程的應(yīng)用方案

基于改進(jìn)ADALINE神經(jīng)網(wǎng)絡(luò)DTMF檢測(cè)算法基于改進(jìn)ADALINE神經(jīng)網(wǎng)絡(luò)DTMF解碼仿真結(jié)果分享一種DTMF信號(hào)檢測(cè)工程的應(yīng)用方案
2021-06-03 07:03:11

卷積神經(jīng)網(wǎng)絡(luò)維卷積的處理過(guò)程

以前的神經(jīng)網(wǎng)絡(luò)幾乎都是部署在云端(服務(wù)上),設(shè)備端采集到數(shù)據(jù)通過(guò)網(wǎng)絡(luò)發(fā)送給服務(wù)做inference(推理),結(jié)果再通過(guò)網(wǎng)絡(luò)返回給設(shè)備端。如今越來(lái)越多的神經(jīng)網(wǎng)絡(luò)部署在嵌入式設(shè)備端上,即
2021-12-23 06:16:40

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問(wèn)題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

神經(jīng)網(wǎng)絡(luò)研究的第次浪潮。1969 年美國(guó)數(shù)學(xué)家及人工智能先驅(qū) Minsky在其著作中證 明感知本質(zhì)上是一種線性模型[21],只能處理線性分 類問(wèn)題,最簡(jiǎn)單的異或問(wèn)題都無(wú)法正確分類,因此神 經(jīng)網(wǎng)絡(luò)的研究也
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

圖像預(yù)處理和改進(jìn)神經(jīng)網(wǎng)絡(luò)推理的簡(jiǎn)要介紹

為提升識(shí)別準(zhǔn)確率,采用改進(jìn)神經(jīng)網(wǎng)絡(luò),通過(guò)Mnist數(shù)據(jù)集進(jìn)行訓(xùn)練。整體處理過(guò)程分為兩步:圖像預(yù)處理和改進(jìn)神經(jīng)網(wǎng)絡(luò)推理。圖像預(yù)處理主要根據(jù)圖像的特征,將數(shù)據(jù)處理成規(guī)范的格式,而改進(jìn)神經(jīng)網(wǎng)絡(luò)推理主要用于輸出結(jié)果。 整個(gè)過(guò)程分為兩個(gè)步驟:圖像預(yù)處理和神經(jīng)網(wǎng)絡(luò)推理。需要提前安裝Tengine框架,
2021-12-23 08:07:33

基于神經(jīng)網(wǎng)絡(luò)控制算法的伺服運(yùn)動(dòng)控制卡該如何去設(shè)計(jì)?

本文設(shè)計(jì)了一種基于神經(jīng)網(wǎng)絡(luò)控制算法的伺服運(yùn)動(dòng)控制卡。
2021-06-03 06:05:09

基于神經(jīng)網(wǎng)絡(luò)混沌吸引子公鑰加密算法的FPGA實(shí)現(xiàn)

【作者】:劉晉明;劉年生;【來(lái)源】:《廈門大學(xué)學(xué)報(bào)(自然科學(xué)版)》2010年02期【摘要】:利用具有順序和并行執(zhí)行的特點(diǎn)的VHDL語(yǔ)言,設(shè)計(jì)并實(shí)現(xiàn)了基于神經(jīng)網(wǎng)絡(luò)混沌吸引子的公鑰加密算法,在編解碼器
2010-04-24 09:15:41

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

神經(jīng)網(wǎng)絡(luò)可以建立參數(shù)Kp,Ki,Kd自整定的PID控制?;贐P神經(jīng)網(wǎng)絡(luò)的PID控制系統(tǒng)結(jié)構(gòu)框圖如下圖所示:控制由兩部分組成:經(jīng)典增量式PID控制;BP神經(jīng)網(wǎng)絡(luò)...
2021-09-07 07:43:47

基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性

FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問(wèn)題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13

如何使用STM32F4+MPU9150去實(shí)現(xiàn)一種神經(jīng)網(wǎng)絡(luò)識(shí)別手勢(shì)呢

如何使用STM32F4+MPU9150去實(shí)現(xiàn)一種神經(jīng)網(wǎng)絡(luò)識(shí)別手勢(shì)呢?其過(guò)程是怎樣的?
2021-11-19 06:38:58

如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)

如何用stm32cube.ai簡(jiǎn)化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42

如何去設(shè)計(jì)一種IPP嵌入式音頻解碼器

如何去設(shè)計(jì)一種IPP嵌入式音頻解碼器?怎樣對(duì)IPP嵌入式音頻解碼器進(jìn)行優(yōu)化?
2021-06-07 06:01:00

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測(cè)的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測(cè)能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測(cè)
2021-07-12 08:02:11

如何用ARM和FPGA搭建神經(jīng)網(wǎng)絡(luò)處理通信方案?

某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于體的便攜式神經(jīng)網(wǎng)絡(luò)處理,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場(chǎng)可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2021-05-21 06:35:27

如何設(shè)計(jì)BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

稱為BP神經(jīng)網(wǎng)絡(luò)。采用BP神經(jīng)網(wǎng)絡(luò)模型能完成圖像數(shù)據(jù)的壓縮處理。在圖像壓縮中,神經(jīng)網(wǎng)絡(luò)的處理優(yōu)勢(shì)在于:巨量并行性;信息處理和存儲(chǔ)單元結(jié)合在起;自組織自學(xué)習(xí)功能。與傳統(tǒng)的數(shù)字信號(hào)處理DSP
2019-08-08 06:11:30

怎么設(shè)計(jì)ARM與神經(jīng)網(wǎng)絡(luò)處理的通信方案?

FPGA的嵌入式應(yīng)用。某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于體的便攜式神經(jīng)網(wǎng)絡(luò)處理,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場(chǎng)可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2019-09-20 06:15:20

隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理

隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理 Copy東京理工大學(xué)的研究人員開(kāi)發(fā)了一種名為“ Hiddenite”的新型加速芯片,該芯片可以在計(jì)算稀疏“隱藏神經(jīng)網(wǎng)絡(luò)”時(shí)達(dá)到最高的精度
2022-03-17 19:15:13

一種基于PID神經(jīng)網(wǎng)絡(luò)的解耦控制方法的研究

為了消除造紙工業(yè)抄紙過(guò)程中存在的解耦問(wèn)題,提出了一種基于PID 神經(jīng)網(wǎng)絡(luò)的解耦方法。文章在介紹PID 神經(jīng)網(wǎng)絡(luò)原理的基礎(chǔ)上,給出了二變量PID 神經(jīng)元網(wǎng)絡(luò)解耦控制系統(tǒng)結(jié)構(gòu)圖,
2009-06-15 10:10:4719

一種改進(jìn)神經(jīng)網(wǎng)絡(luò)板形模式識(shí)別方法

本文提出了一種改進(jìn)神經(jīng)網(wǎng)絡(luò)板形模式識(shí)別方法,該方法基于支持向量機(jī)(SVM)與徑向基(RBF)網(wǎng)絡(luò)的結(jié)構(gòu)等價(jià)性,利用SVM的回歸確定RBF網(wǎng)絡(luò)較優(yōu)的初始參數(shù),解決了傳統(tǒng)神經(jīng)
2009-06-29 09:54:4618

一種基于RBF神經(jīng)網(wǎng)絡(luò)的傳感故障診斷方法

針對(duì)傳感故障, 提出了一種基于RBF 神經(jīng)網(wǎng)絡(luò)的集成故障診斷方法。用RBF 神經(jīng)網(wǎng)絡(luò)建立傳感故障模型, 對(duì)系統(tǒng)的狀態(tài)和故障參數(shù)進(jìn)行在線估計(jì), 然后將故障參數(shù)與修正的Bayes分類算
2009-07-14 11:58:1913

一種基于人工神經(jīng)網(wǎng)絡(luò)的秘密共享方案

本文首先分析了人工神經(jīng)網(wǎng)絡(luò)和秘密共享的相通之處,闡明了用人工神經(jīng)網(wǎng)絡(luò)來(lái)實(shí)現(xiàn)秘密共享是可能的;其次給出了一種基于人工神經(jīng)網(wǎng)絡(luò)的秘密共享的門限方案,詳細(xì)介紹了
2009-08-15 09:54:1715

基于DTMF解碼器設(shè)計(jì)

本文介紹了DTMF 解碼芯片MT8870 的功能和特點(diǎn),給出了在解碼器中與89C51 單片機(jī)的接口電路,說(shuō)明了解碼器的工作原理抗干擾措施。關(guān)鍵詞:?jiǎn)纹瑱C(jī)抗干擾 DTMF 解碼監(jiān)控在
2009-08-19 08:20:5371

基于DTMF解碼器設(shè)計(jì)

本文介紹了DTMF 解碼芯片MT8870 的功能和特點(diǎn),給出了在解碼器中與89C51 單片機(jī)的接口電路,說(shuō)明了解碼器的工作原理抗干擾措施。關(guān)鍵詞:?jiǎn)纹瑱C(jī)抗干擾 DTMF 解碼監(jiān)控在
2009-08-21 09:42:5934

一種改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)調(diào)制分類

本文致力于基于神經(jīng)網(wǎng)絡(luò)的通信信號(hào)調(diào)制類型識(shí)別設(shè)計(jì)研究。論文提出了一種改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)分類,它采用7個(gè)特征參數(shù),可以對(duì)CW、2FSK、4FSK、8FSK、2PSK、4PSK、8PSK、8QAM、16QA
2009-08-29 10:22:1010

一種BP神經(jīng)網(wǎng)絡(luò)改進(jìn)算法的研究及應(yīng)用

本文首先介紹了傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)BP 算法的優(yōu)缺點(diǎn),并結(jié)合模擬退火算法局部搜索全局的特點(diǎn),提出將模擬退火算法和傳統(tǒng)的BP 算法相結(jié)合,形成一種新的BP 神經(jīng)網(wǎng)絡(luò)算法,有效的解
2010-01-09 11:57:0512

基于MSP430的嵌入式DTMF撥號(hào)解碼器實(shí)現(xiàn)方案

摘 要:本文介紹了一種基于MSP430的嵌入式DTMF撥號(hào)解碼器實(shí)現(xiàn)方案。DTMF撥號(hào)部分使用4根I/O線的電阻網(wǎng)絡(luò),配合軟件產(chǎn)生DTMF信號(hào)。利用MSP430F133內(nèi)置的ADC,并采用改進(jìn)
2006-03-11 11:43:501306

常用DTMF/FSK解碼器集成電路

常用DTMF/FSK解碼器集成電路
2006-06-30 19:19:053735

用BP神經(jīng)網(wǎng)絡(luò)及其改進(jìn)算法改善傳

用BP神經(jīng)網(wǎng)絡(luò)及其改進(jìn)算法改善 傳感特性BP算法即多層網(wǎng)絡(luò)誤差反傳算法,是近幾年在傳感輸出信號(hào)補(bǔ)償技術(shù)領(lǐng)域中一種較新的方法,
2009-06-08 13:50:042190

一種神經(jīng)網(wǎng)絡(luò)多用戶檢測(cè)

一種神經(jīng)網(wǎng)絡(luò)多用戶檢測(cè) 本文提出采用Hopfield神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)CDMA多用戶通信系統(tǒng)中多用戶信號(hào)的檢測(cè).利用基于檢測(cè)序列最大后驗(yàn)概率最佳多用戶檢測(cè)的似然函數(shù)與Hop
2009-10-21 08:46:52895

Adaline神經(jīng)網(wǎng)絡(luò)隨機(jī)逼近LMS算法的仿真研究

Adaline神經(jīng)網(wǎng)絡(luò)隨機(jī)逼近LMS算法的仿真研究 1 引言    人工神經(jīng)網(wǎng)絡(luò)最重要的功能之是分類。對(duì)于線性可分問(wèn)題,采用硬限幅函數(shù)的單個(gè)神經(jīng)元,通過(guò)簡(jiǎn)單的學(xué)
2009-11-04 10:31:142081

神經(jīng)網(wǎng)絡(luò)改進(jìn)BP算法的DSP實(shí)現(xiàn)

摘要:研究一種前向型神經(jīng)網(wǎng)絡(luò)改進(jìn)學(xué)習(xí)算法并基于TI的TMS320C5402定點(diǎn)數(shù)字信號(hào)處理開(kāi)發(fā)系統(tǒng)實(shí)現(xiàn)該算法的訓(xùn)練學(xué)習(xí)。測(cè)試結(jié)果表明:網(wǎng)絡(luò)學(xué)習(xí)速率提高,網(wǎng)絡(luò)的輸出動(dòng)態(tài)響應(yīng)具有超調(diào)
2011-02-25 00:27:2749

改進(jìn)概率神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)紋理圖像識(shí)別

引入差異演化( DE) 算法來(lái)彌補(bǔ)基本概率神經(jīng)網(wǎng)絡(luò)的不足, 從而提出一種基于改進(jìn)概率神經(jīng)網(wǎng)絡(luò)( MPNN) 的紋理圖像識(shí)別方法。首先用樹(shù)形結(jié)構(gòu)小波包變換提取紋理圖像的能量特征, 用基于統(tǒng)
2011-09-28 17:39:5928

基于MSP430的嵌入式DTMF撥號(hào)解碼器方案設(shè)計(jì)

本文介紹了一種基于MSP430的嵌入式DTMF撥號(hào)解碼器實(shí)現(xiàn)方案。DTMF撥號(hào)部分使用4根I/O線的電阻網(wǎng)絡(luò),配合軟件產(chǎn)生DTMF信號(hào)。
2012-04-23 11:28:391852

一種基于深度神經(jīng)網(wǎng)絡(luò)的基音檢測(cè)算法

一種基于深度神經(jīng)網(wǎng)絡(luò)的基音檢測(cè)算法_曹猛
2017-01-07 19:08:430

一種具有查錯(cuò)功能的10B_8B解碼器設(shè)計(jì)

一種具有查錯(cuò)功能的10B_8B解碼器設(shè)計(jì)_鄒陳
2017-01-07 21:39:442

一種高速卷積編解碼器的FPGA實(shí)現(xiàn)

一種高速卷積編解碼器的FPGA實(shí)現(xiàn)
2017-02-07 15:05:0022

改進(jìn)BP神經(jīng)網(wǎng)絡(luò)用于入侵檢測(cè)_丁玲

改進(jìn)BP神經(jīng)網(wǎng)絡(luò)用于入侵檢測(cè)_丁玲
2017-03-19 11:30:431

一種改進(jìn)的自適應(yīng)遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)

神經(jīng)網(wǎng)絡(luò)計(jì)算模型的優(yōu)化,運(yùn)用到汽車加油量計(jì)算中,通過(guò)比較標(biāo)準(zhǔn)BP網(wǎng)絡(luò)、Srinivas提出的自適應(yīng)遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)改進(jìn)的自適應(yīng)遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)3模型的計(jì)算誤差,驗(yàn)證得出改進(jìn)的自適應(yīng)遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的算法優(yōu)于另外兩
2017-11-16 10:39:5513

一種改進(jìn)的基于卷積神經(jīng)網(wǎng)絡(luò)的行人檢測(cè)方法

為了在行人檢測(cè)任務(wù)中使卷積神經(jīng)網(wǎng)絡(luò)(CNN)選擇出更優(yōu)模型并獲得定位更準(zhǔn)確的檢測(cè)框,提出一種改進(jìn)的基于卷積神經(jīng)網(wǎng)絡(luò)的行人檢測(cè)方法。改進(jìn)主要涉及兩個(gè)方面:如何決定CNN樣本迭代學(xué)習(xí)次數(shù)和如何進(jìn)行重合
2017-12-01 15:23:500

基于反相傳播神經(jīng)網(wǎng)絡(luò)改進(jìn)的MGEKF算法

增益修改的卡爾曼濾波( MGEKF)算法在實(shí)際應(yīng)用時(shí),般使用帶有誤差的測(cè)量值代替真實(shí)值進(jìn)行增益修正計(jì)算,導(dǎo)致修正結(jié)果也被誤差污染。針對(duì)這問(wèn)題,提出一種基于反向傳播神經(jīng)網(wǎng)絡(luò)( BPNN)改進(jìn)
2017-12-18 14:27:130

一種改進(jìn)的多策略粒子群神經(jīng)網(wǎng)絡(luò)在室內(nèi)定位中應(yīng)用

針對(duì)室內(nèi)復(fù)雜環(huán)境下無(wú)線信號(hào)反射、折射、多徑效應(yīng)、噪聲等干擾,傳統(tǒng)的對(duì)數(shù)距離路徑損耗模型無(wú)法精確求出信號(hào)接收距離(f的問(wèn)題進(jìn)行研究,提出一種改進(jìn)的多策略粒子群神經(jīng)網(wǎng)絡(luò)模型。該網(wǎng)絡(luò)采用反向?qū)W習(xí)策略、混沌
2018-01-15 16:06:270

關(guān)于一種基于FPGA的低功耗高速解碼器的設(shè)計(jì)

和應(yīng)用,利用神經(jīng)網(wǎng)絡(luò)進(jìn)行數(shù)學(xué)函數(shù)回歸的方案,為信息的編解碼提供了簡(jiǎn)單有效的途徑[2]。自編碼神經(jīng)網(wǎng)絡(luò)一種無(wú)監(jiān)督的人工神經(jīng)網(wǎng)絡(luò),其利用反向傳播算法訓(xùn)練使得網(wǎng)絡(luò)的輸出值等于輸入值,從而為輸入數(shù)據(jù)學(xué)習(xí)到一種
2018-06-20 14:10:003705

一種新型神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu):膠囊網(wǎng)絡(luò)

膠囊網(wǎng)絡(luò)是 Geoffrey Hinton 提出的一種新型神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),為了解決卷積神經(jīng)網(wǎng)絡(luò)(ConvNets)的些缺點(diǎn),提出了膠囊網(wǎng)絡(luò)。
2019-02-02 09:25:006526

一種神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)改進(jìn)方法「ReZero」

近日,來(lái)自加州大學(xué)圣迭戈分校(UCSD)的研究者提出一種神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)改進(jìn)方法「ReZero」,它能夠動(dòng)態(tài)地加快優(yōu)質(zhì)梯度和任意深層信號(hào)的傳播。
2020-04-17 09:30:565940

一種改進(jìn)的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索方法

為提升網(wǎng)絡(luò)結(jié)構(gòu)的尋優(yōu)能力,提岀一種改進(jìn)的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索方法。針對(duì)網(wǎng)絡(luò)結(jié)構(gòu)間距難以度量的問(wèn)題,結(jié)合神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)搜索方案,設(shè)計(jì)基于圖的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)間距度量方式。對(duì)少量步數(shù)訓(xùn)練和充分訓(xùn)練2
2021-03-16 14:05:463

一種攜帶歷史元素的循環(huán)神經(jīng)網(wǎng)絡(luò)推薦模型

動(dòng)態(tài)推薦系統(tǒng)通過(guò)學(xué)習(xí)動(dòng)態(tài)變化的興趣特征來(lái)考慮推薦系統(tǒng)中的動(dòng)態(tài)因素,實(shí)現(xiàn)推薦任務(wù)隨著時(shí)間變化而實(shí)時(shí)更新。該文提出一種攜帶歷史元素的循環(huán)神經(jīng)網(wǎng)絡(luò)( ecurrent Neural Net works
2021-03-31 09:31:515

HT9170雙音頻(DTMF)接收解碼器中文資料

HT9170雙音頻(DTMF)接收解碼器中文資料分享。
2021-04-13 15:32:3028

基于改進(jìn)郊狼優(yōu)化算法的淺層神經(jīng)網(wǎng)絡(luò)進(jìn)化

基于改進(jìn)郊狼優(yōu)化算法的淺層神經(jīng)網(wǎng)絡(luò)進(jìn)化
2021-06-24 15:40:2315

神經(jīng)網(wǎng)絡(luò)算法三大類 神經(jīng)網(wǎng)絡(luò)用python還是matlab

人工神經(jīng)網(wǎng)絡(luò)簡(jiǎn)稱神經(jīng)網(wǎng)絡(luò),是一種模仿生物神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計(jì)算模型,神經(jīng)網(wǎng)絡(luò)般可以分為以下常用的三大類。
2022-01-03 16:33:0017428

一種降噪及雙參量提取卷積神經(jīng)網(wǎng)絡(luò)(DECNN)方案

針對(duì)上述問(wèn)題,華中科技大學(xué)唐明教授、王亮教授團(tuán)隊(duì)提出了一種降噪及雙參量提取卷積神經(jīng)網(wǎng)絡(luò)(DECNN)方案,在單個(gè)卷積神經(jīng)網(wǎng)絡(luò)(CNN)框架下實(shí)現(xiàn)了降噪和雙參量提取的集成化。
2022-10-28 14:49:402206

僅使用Arduino的DTMF解碼器

電子發(fā)燒友網(wǎng)站提供《僅使用Arduino的DTMF解碼器.zip》資料免費(fèi)下載
2022-12-06 15:55:550

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù) 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種用于圖像分類、物體識(shí)別、語(yǔ)音識(shí)別等領(lǐng)域
2023-08-21 16:49:462798

卷積神經(jīng)網(wǎng)絡(luò)和深度神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn) 卷積神經(jīng)網(wǎng)絡(luò)和深度神經(jīng)網(wǎng)絡(luò)的區(qū)別

深度神經(jīng)網(wǎng)絡(luò)一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動(dòng)調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對(duì)大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測(cè)和分類。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:365026

卷積神經(jīng)網(wǎng)絡(luò)模型搭建

卷積神經(jīng)網(wǎng)絡(luò)模型搭建 卷積神經(jīng)網(wǎng)絡(luò)模型是一種深度學(xué)習(xí)算法。它已經(jīng)成為了計(jì)算機(jī)視覺(jué)和自然語(yǔ)言處理等各種領(lǐng)域的主流算法,具有很大的應(yīng)用前景。本篇文章將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)模型的搭建過(guò)程,為讀者提供
2023-08-21 17:11:491592

人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別? 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)是一種模仿人腦神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)和功能的計(jì)算模型,也被稱為神經(jīng)網(wǎng)絡(luò)(Neural
2023-08-22 16:45:186053

一種基于MCU的神經(jīng)網(wǎng)絡(luò)模型在線更新方案之?dāng)?shù)據(jù)處理篇

一種基于MCU的神經(jīng)網(wǎng)絡(luò)模型在線更新方案之?dāng)?shù)據(jù)處理篇
2023-10-17 18:06:471019

一種基于MCU的神經(jīng)網(wǎng)絡(luò)模型靈活更新方案之先行篇

一種基于MCU的神經(jīng)網(wǎng)絡(luò)模型靈活更新方案之先行篇
2023-10-17 17:48:581103

神經(jīng)網(wǎng)絡(luò)在數(shù)學(xué)建模中的應(yīng)用

數(shù)學(xué)建模是一種利用數(shù)學(xué)方法和工具來(lái)描述和分析現(xiàn)實(shí)世界問(wèn)題的過(guò)程。神經(jīng)網(wǎng)絡(luò)一種模擬人腦神經(jīng)元結(jié)構(gòu)和功能的計(jì)算模型,可以用于解決各種復(fù)雜問(wèn)題。在數(shù)學(xué)建模中,神經(jīng)網(wǎng)絡(luò)可以作為一種有效的工具,幫助我們更好
2024-07-02 11:29:222323

卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

不同的神經(jīng)網(wǎng)絡(luò)模型,它們?cè)诮Y(jié)構(gòu)、原理、應(yīng)用等方面都存在定的差異。本文將從多個(gè)方面對(duì)這兩神經(jīng)網(wǎng)絡(luò)進(jìn)行詳細(xì)的比較和分析。 引言 神經(jīng)網(wǎng)絡(luò)一種模擬人腦神經(jīng)元連接和信息傳遞的計(jì)算模型,它具有強(qiáng)大的非線性擬合能力和泛
2024-07-02 14:24:037112

卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的原理,包括其
2024-07-02 14:44:081836

bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

結(jié)構(gòu)、原理、應(yīng)用場(chǎng)景等方面都存在定的差異。以下是對(duì)這兩神經(jīng)網(wǎng)絡(luò)的比較: 基本結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)一種多層前饋神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。每個(gè)神經(jīng)元之間通過(guò)權(quán)重連接,并通過(guò)激活函數(shù)進(jìn)行非線性轉(zhuǎn)換。BP神經(jīng)網(wǎng)絡(luò)通過(guò)反向傳播算法進(jìn)行訓(xùn)練,通過(guò)調(diào)整權(quán)重和偏置來(lái)最小化損失函數(shù)。 卷積神經(jīng)網(wǎng)絡(luò)
2024-07-03 10:12:473378

bp神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)

BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一種常見(jiàn)的前饋神經(jīng)網(wǎng)絡(luò),它使用反向傳播算法來(lái)訓(xùn)練網(wǎng)絡(luò)。雖然BP神經(jīng)網(wǎng)絡(luò)在某些方面與深度神經(jīng)網(wǎng)絡(luò)(Deep Neural
2024-07-03 10:14:301799

如何使用神經(jīng)網(wǎng)絡(luò)進(jìn)行建模和預(yù)測(cè)

神經(jīng)網(wǎng)絡(luò)一種強(qiáng)大的機(jī)器學(xué)習(xí)技術(shù),可以用于建模和預(yù)測(cè)變量之間的關(guān)系。 神經(jīng)網(wǎng)絡(luò)的基本概念 神經(jīng)網(wǎng)絡(luò)一種受人腦啟發(fā)的計(jì)算模型,由大量的節(jié)點(diǎn)(神經(jīng)元)組成,這些節(jié)點(diǎn)通過(guò)權(quán)重連接在起。每個(gè)神經(jīng)元接收
2024-07-03 10:23:071693

反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network,簡(jiǎn)稱BP神經(jīng)網(wǎng)絡(luò))是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過(guò)反向傳播算法來(lái)調(diào)整網(wǎng)絡(luò)中的權(quán)重和偏置,以達(dá)到最小化誤差的目的。BP
2024-07-03 11:00:201737

bp神經(jīng)網(wǎng)絡(luò)和反向傳播神經(jīng)網(wǎng)絡(luò)區(qū)別在哪

反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network,簡(jiǎn)稱BP神經(jīng)網(wǎng)絡(luò))是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過(guò)反向傳播算法來(lái)調(diào)整網(wǎng)絡(luò)中的權(quán)重和偏置,以達(dá)到最小化誤差的目的。BP
2024-07-04 09:51:321388

循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

結(jié)構(gòu)。它們?cè)谔幚聿煌愋偷臄?shù)據(jù)和解決不同問(wèn)題時(shí)具有各自的優(yōu)勢(shì)和特點(diǎn)。本文將從多個(gè)方面比較循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別。 基本概念 循環(huán)神經(jīng)網(wǎng)絡(luò)一種具有循環(huán)連接的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),它可以處理序列數(shù)據(jù),如時(shí)間序列、文本、音頻等。RNN的核心思想是將前個(gè)時(shí)間步的輸出作為下個(gè)時(shí)間步的輸入,從而實(shí)
2024-07-04 14:24:512764

遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

。 遞歸神經(jīng)網(wǎng)絡(luò)的概念 遞歸神經(jīng)網(wǎng)絡(luò)一種具有短期記憶功能的神經(jīng)網(wǎng)絡(luò),它能夠處理序列數(shù)據(jù),如時(shí)間序列、文本、語(yǔ)音等。與傳統(tǒng)的前饋神經(jīng)網(wǎng)絡(luò)不同,遞歸神經(jīng)網(wǎng)絡(luò)神經(jīng)元之間存在循環(huán)連接,使得網(wǎng)絡(luò)能夠在處理序列數(shù)據(jù)時(shí)保持狀態(tài)。 遞歸神經(jīng)網(wǎng)絡(luò)的原理 遞歸神經(jīng)網(wǎng)絡(luò)的核心原理是將前個(gè)時(shí)間步的輸出作為
2024-07-04 14:54:592070

人工神經(jīng)網(wǎng)絡(luò)模型是一種什么模型

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡(jiǎn)稱ANNs)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)而產(chǎn)生的數(shù)學(xué)模型,用于模擬人腦處理信息的方式。它由大量的節(jié)點(diǎn)(或稱為神經(jīng)元)相互連接而成
2024-07-04 16:57:432432

人工神經(jīng)網(wǎng)絡(luò)模型的分類有哪些

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks, ANNs)是一種模擬人腦神經(jīng)元網(wǎng)絡(luò)的計(jì)算模型,它在許多領(lǐng)域,如圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理、預(yù)測(cè)分析等有著廣泛的應(yīng)用。本文將
2024-07-05 09:13:553433

遞歸神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)樣嗎

神經(jīng)網(wǎng)絡(luò)一種基于樹(shù)結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò)模型,它通過(guò)遞歸地將輸入數(shù)據(jù)分解為更小的子問(wèn)題來(lái)處理序列數(shù)據(jù)。RvNN的核心思想是將復(fù)雜的序列問(wèn)題
2024-07-05 09:28:472106

rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)一種具有時(shí)間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)神經(jīng)網(wǎng)絡(luò)的介紹
2024-07-05 09:52:361512

UNet模型屬于哪種神經(jīng)網(wǎng)絡(luò)

U-Net模型屬于卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)的一種特殊形式 。它最初由德國(guó)弗萊堡大學(xué)計(jì)算機(jī)科學(xué)系的研究人員在2015年提出,專為生物醫(yī)學(xué)圖像
2024-07-24 10:59:156894

已全部加載完成