,在一定程度上擴(kuò)展了轉(zhuǎn)速估計(jì)范圍。
純分享帖,需要者可點(diǎn)擊附件免費(fèi)獲取完整資料~~~*附件:神經(jīng)網(wǎng)絡(luò)RAS在異步電機(jī)轉(zhuǎn)速估計(jì)中的仿真研究.pdf【免責(zé)聲明】本文系網(wǎng)絡(luò)轉(zhuǎn)載,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)第一時(shí)間告知,刪除內(nèi)容!
2025-06-16 21:54:16
源程序 4.3 旅行商問(wèn)題(TSP)的HNN求解 Hopfield模型求解TSP源程序 第5章 隨機(jī)型神經(jīng)網(wǎng)絡(luò) 5.1 模擬退火算法 5.2 Boltzmann機(jī) Boltzmann機(jī)模型
2012-03-20 11:32:43
遞歸網(wǎng)絡(luò)newelm 創(chuàng)建一Elman遞歸網(wǎng)絡(luò)2. 網(wǎng)絡(luò)應(yīng)用函數(shù)sim 仿真一個(gè)神經(jīng)網(wǎng)絡(luò)init 初始化一個(gè)神經(jīng)網(wǎng)絡(luò)adapt 神經(jīng)網(wǎng)絡(luò)的自適應(yīng)化train 訓(xùn)練一個(gè)神經(jīng)網(wǎng)絡(luò)3. 權(quán)函數(shù)dotprod
2009-09-22 16:10:08
請(qǐng)問(wèn):我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒(méi)有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類(lèi)“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08
今天學(xué)習(xí)了兩個(gè)神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺(jué)不是很難,只不過(guò)一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競(jìng)爭(zhēng)學(xué)習(xí)的一個(gè)代表,競(jìng)爭(zhēng)型學(xué)習(xí)
2019-07-21 04:30:00
傳播的,不會(huì)回流),區(qū)別于循環(huán)神經(jīng)網(wǎng)絡(luò)RNN。BP算法(Back Propagation):誤差反向傳播算法,用于更新網(wǎng)絡(luò)中的權(quán)重。BP神經(jīng)網(wǎng)絡(luò)思想:表面上:1. 數(shù)據(jù)信息的前向傳播,從輸入層到隱含層
2019-07-21 04:00:00
成為了非常重要的問(wèn)題。 基于以上問(wèn)題,本文提出了一種基于高效采樣算法的時(shí)序圖神經(jīng)網(wǎng)絡(luò)系統(tǒng) 。首先我們介紹用于時(shí)序圖神經(jīng)網(wǎng)絡(luò)采樣的高效采樣方法。采樣常常被用于深度學(xué)習(xí)中以降低模型的訓(xùn)練時(shí)間。然而現(xiàn)有的采樣
2022-09-28 10:34:13
人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識(shí)過(guò)程而開(kāi)發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對(duì)如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過(guò)程看成是一個(gè)“網(wǎng)絡(luò)”,通過(guò)不斷地給
2008-06-19 14:40:42
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類(lèi)似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線(xiàn)性,非平穩(wěn),復(fù)雜的實(shí)際問(wèn)題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
基于改進(jìn)的ADALINE神經(jīng)網(wǎng)絡(luò)的DTMF檢測(cè)算法基于改進(jìn)的ADALINE神經(jīng)網(wǎng)絡(luò)的DTMF解碼仿真結(jié)果分享一種DTMF信號(hào)檢測(cè)器工程的應(yīng)用方案
2021-06-03 07:03:11
卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問(wèn)題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
2019-07-17 07:21:50
propagation algorithm,BP)[22]。BP 算法采用 Sigmoid 進(jìn)行非線(xiàn)性映射,有效解決了 非線(xiàn)性分類(lèi)和學(xué)習(xí)的問(wèn)題,掀起了神經(jīng)網(wǎng)絡(luò)第二次 研究高潮。BP 網(wǎng)絡(luò)是迄今為止最常用的神經(jīng)網(wǎng)絡(luò), 目前
2022-08-02 10:39:39
運(yùn)行的特點(diǎn).VHDL語(yǔ)言的這些特點(diǎn)非常適合仿真神經(jīng)網(wǎng)絡(luò),便于硬件實(shí)現(xiàn),如研究利用VHDL語(yǔ)言模仿生物神全文下載
2010-04-24 09:15:41
最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線(xiàn)性表達(dá)能力,可以通過(guò)對(duì)系統(tǒng)性能的學(xué)習(xí)來(lái)實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47
FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問(wèn)題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13
本文介紹了基于三層前饋BP神經(jīng)網(wǎng)絡(luò)的圖像壓縮算法,提出了基于FPGA的實(shí)現(xiàn)驗(yàn)證方案,詳細(xì)討論了實(shí)現(xiàn)該壓縮網(wǎng)絡(luò)組成的重要模塊MAC電路的流水線(xiàn)設(shè)計(jì)。
2021-05-06 07:01:59
原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測(cè)的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測(cè)能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測(cè)
2021-07-12 08:02:11
訓(xùn)練一個(gè)神經(jīng)網(wǎng)絡(luò)并移植到Lattice FPGA上,通常需要開(kāi)發(fā)人員既要懂軟件又要懂?dāng)?shù)字電路設(shè)計(jì),是個(gè)不容易的事。好在FPGA廠商為我們提供了許多工具和IP,我們可以在這些工具和IP的基礎(chǔ)上做
2020-11-26 07:46:03
神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡(jiǎn)稱(chēng),是當(dāng)前的研究熱點(diǎn)之一。人腦在接受視覺(jué)感官傳來(lái)的大量圖像信息后,能迅速做出反應(yīng)
2019-08-08 06:11:30
摘要:論文通過(guò)對(duì)無(wú)刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個(gè)以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來(lái)實(shí)現(xiàn)轉(zhuǎn)角預(yù)測(cè),并采用改進(jìn)遺傳算法來(lái)訓(xùn)練網(wǎng)絡(luò)結(jié)構(gòu)與參數(shù),借助
2025-06-25 13:06:40
譯者|VincentLee來(lái)源 |曉飛的算法工程筆記脈沖神經(jīng)網(wǎng)絡(luò)(Spiking neural network, SNN)將脈沖神經(jīng)元作為計(jì)算單...
2021-07-26 06:23:59
小女子做基于labview的蒸發(fā)過(guò)程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請(qǐng)問(wèn)這個(gè)控制方法可以嗎?有誰(shuí)會(huì)神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16
求高手,基于labview的BP
神經(jīng)網(wǎng)絡(luò)算法的實(shí)現(xiàn)過(guò)程,最好有程序哈,謝謝?。?/div>
2012-12-10 14:55:50
求大神給一個(gè)人工神經(jīng)網(wǎng)絡(luò)與遺傳算法的源代碼。
2016-04-19 17:15:29
針對(duì)模糊神經(jīng)網(wǎng)絡(luò)訓(xùn)練采用BP算法比較依賴(lài)于網(wǎng)絡(luò)的初始條件,訓(xùn)練時(shí)間較長(zhǎng),容易陷入局部極值的缺點(diǎn),利用粒子群優(yōu)化算法(PSO)的全局搜索性能,將PSO用于模糊神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過(guò)程.由于基本PSO算法存在
2010-05-06 09:05:35
關(guān)于遺傳算法和神經(jīng)網(wǎng)絡(luò)的
2013-05-19 10:22:16
模糊神經(jīng)網(wǎng)絡(luò)提供了從人工神經(jīng)網(wǎng)絡(luò)中模糊規(guī)則的抽取。本文研究模糊神經(jīng)網(wǎng)絡(luò)的自適應(yīng)學(xué)習(xí)、規(guī)則插入和抽取及神經(jīng)-模糊推理的FuNN 模型。把遺傳算法作為系統(tǒng)模糊規(guī)則選擇的自
2009-06-06 13:45:42
18 根據(jù)神經(jīng)網(wǎng)絡(luò)的基本理論,研究了神經(jīng)網(wǎng)絡(luò)在電器設(shè)備中的應(yīng)用,提出了神經(jīng)網(wǎng)絡(luò)的分塊構(gòu)造方法和神經(jīng)網(wǎng)絡(luò)分塊學(xué)習(xí)算法,并通過(guò)實(shí)驗(yàn)?zāi)M達(dá)到實(shí)際要求。關(guān)鍵詞 神經(jīng)網(wǎng)絡(luò) 算法 權(quán)
2009-06-13 11:40:03
10 提出一種新的基于隨機(jī)模糊神經(jīng)網(wǎng)絡(luò)的多傳感器狀態(tài)信息融合方法, 研究和比較了基于單值模糊神經(jīng)網(wǎng)絡(luò)和基于隨機(jī)模糊神經(jīng)網(wǎng)絡(luò)的雷達(dá)與紅外傳感器狀態(tài)信息融合。仿真結(jié)果表明,
2009-07-09 14:42:16
10 本文討論了使用BP 神經(jīng)網(wǎng)絡(luò)PID 控制算法,并且將這種控制算法應(yīng)用在漂白工段的控制當(dāng)中。利用神經(jīng)網(wǎng)絡(luò)自學(xué)習(xí)能力,在線(xiàn)整定PID 控制參數(shù)。實(shí)踐證明BP 神經(jīng)網(wǎng)絡(luò)PID控制器具有
2009-08-15 10:27:36
35 本文設(shè)計(jì)了一種基于自適應(yīng)模糊神經(jīng)網(wǎng)絡(luò)的變步長(zhǎng)LMS算法,該算法采用了一種新的模糊控制規(guī)則,按照該規(guī)則改變LMS算法的步長(zhǎng)。文章最后給出了非線(xiàn)性噪聲抵消的仿真結(jié)果。關(guān)
2009-08-27 11:42:57
7 本文討論了神經(jīng)網(wǎng)絡(luò)PID 控制策略,利用神經(jīng)網(wǎng)絡(luò)的自學(xué)習(xí)能力進(jìn)行PID控制參數(shù)的在線(xiàn)整定,并使用Matlab 軟件進(jìn)行了仿真研究。仿真結(jié)果表明,神經(jīng)網(wǎng)絡(luò)PID 控制器參數(shù)調(diào)整簡(jiǎn)單,具
2009-09-14 16:53:35
65 偽隨機(jī)序列在保密通信、擴(kuò)頻通信、密碼學(xué)等領(lǐng)域具有重要作用。本文結(jié)合神經(jīng)網(wǎng)絡(luò)和混沌映射的特點(diǎn),提出了一種基于過(guò)擬合BP 神經(jīng)網(wǎng)絡(luò)的混沌偽隨機(jī)序列產(chǎn)生方法。以logist
2009-12-22 14:12:48
6 本文首先介紹了傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)BP 算法的優(yōu)缺點(diǎn),并結(jié)合模擬退火算法局部搜索全局的特點(diǎn),提出將模擬退火算法和傳統(tǒng)的BP 算法相結(jié)合,形成一種新的BP 神經(jīng)網(wǎng)絡(luò)算法,有效的解
2010-01-09 11:57:05
12 介紹了MATLAB軟件的仿真技術(shù)在神經(jīng)網(wǎng)絡(luò)一模糊控制電冰箱的仿真研究中的應(yīng)用,并用匯編語(yǔ)言編程實(shí)現(xiàn)了制冷目標(biāo)溫度和制冷過(guò)程的模糊控制,以及神經(jīng)網(wǎng)絡(luò)在預(yù)冷和化霜等智能控
2010-01-12 16:57:42
34 一種新的基于改進(jìn)的ADALINE神經(jīng)網(wǎng)絡(luò)的DTMF解碼器方案
一、引言 DTMF(雙音多頻)信號(hào)是電話(huà)網(wǎng)中常用的信令,無(wú)論是家用電話(huà)、移動(dòng)電話(huà)還是程控交換機(jī)上,多采用DTMF
2009-11-06 10:04:30
2450 
人工神經(jīng)網(wǎng)絡(luò)的特點(diǎn)有哪些?
人工神經(jīng)網(wǎng)絡(luò)突出的優(yōu)點(diǎn)
(1)可以充分逼近任意復(fù)雜的非線(xiàn)性關(guān)系; (2)所有定量或定性
2010-03-06 13:48:15
24990 分析了負(fù)荷預(yù)測(cè)的基本概念,以及基于神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)原理中正向和逆向建模的基本結(jié)構(gòu),研究了聯(lián)想神經(jīng)網(wǎng)絡(luò)優(yōu)化算法。設(shè)計(jì)了電力系統(tǒng)負(fù)荷預(yù)測(cè)模型,并對(duì)系統(tǒng)進(jìn)行仿真測(cè)試,試驗(yàn)結(jié)果表
2012-02-10 16:59:04
46 文中將BP神經(jīng)網(wǎng)絡(luò)的原理應(yīng)用于參數(shù)辨識(shí)過(guò)程,結(jié)合傳統(tǒng)的 PID控制算法,形成一種改進(jìn)型BP神經(jīng)網(wǎng)絡(luò)PID控制算法。該算法利用BP神經(jīng)網(wǎng)絡(luò)建立系統(tǒng)參數(shù)模型,能夠跟蹤被控對(duì)象的變化,取
2012-07-16 15:53:08
51 算法大全第19章_神經(jīng)網(wǎng)絡(luò)模型,有需要的下來(lái)看看。
2016-01-14 17:49:09
0 基于BP神經(jīng)網(wǎng)絡(luò)的SVPWM算法的研究與仿真
2016-04-15 18:29:16
11 基于神經(jīng)網(wǎng)絡(luò)的三電平逆變器SVPWM算法研究
2016-03-30 18:24:14
21 使用Matlab的關(guān)于人工神經(jīng)網(wǎng)絡(luò)原理及仿真實(shí)例,感興趣可以打開(kāi)看看。
2022-05-11 16:34:20
37 神經(jīng)網(wǎng)絡(luò)圖像壓縮算法的FPGA實(shí)現(xiàn)技術(shù)研究,下來(lái)看看
2016-09-17 07:29:23
19 基于模擬退火算法改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)算法_周愛(ài)武
2017-01-03 17:41:32
0 BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法
2017-09-08 09:42:48
10 針對(duì)復(fù)雜網(wǎng)絡(luò)環(huán)境下網(wǎng)絡(luò)流監(jiān)測(cè)(分類(lèi))問(wèn)題,為實(shí)現(xiàn)多個(gè)類(lèi)別直接分類(lèi)以及提高學(xué)習(xí)方法的訓(xùn)練速度,提出了一種隨機(jī)的人工神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)方法。該方法借鑒平面高斯(PG)神經(jīng)網(wǎng)絡(luò)模型,引入隨機(jī)投影思想,通過(guò)計(jì)算
2017-12-05 15:26:10
0 神經(jīng)網(wǎng)絡(luò)是一套特定的算法,是機(jī)器學(xué)習(xí)中的一類(lèi)模型,神經(jīng)網(wǎng)絡(luò)本身就是一般泛函數(shù)的逼近,它能夠理解大腦是如何工作,能夠了解受神經(jīng)元和自適應(yīng)連接啟發(fā)的并行計(jì)算風(fēng)格,通過(guò)使用受大腦啟發(fā)的新穎學(xué)習(xí)算法來(lái)解決實(shí)際問(wèn)題等。
2018-02-11 11:17:26
28145 
( FOMC)序列代替實(shí)測(cè)序列進(jìn)行低頻振蕩的辨識(shí)。然后,利用HTLS和自適應(yīng)神經(jīng)網(wǎng)絡(luò)算法(Adaline ANN)相結(jié)合,估計(jì)出低頻振蕩的頻率、衰減因子、幅值和相位。Adaline神經(jīng)網(wǎng)絡(luò)的引入解決了四階混合累積處理后,模式幅值和相位不易確定的難點(diǎn),同時(shí)減少矩陣
2018-02-23 10:28:10
0 BP 神經(jīng)網(wǎng)絡(luò)是一類(lèi)基于誤差逆向傳播 (BackPropagation, 簡(jiǎn)稱(chēng) BP) 算法的多層前饋神經(jīng)網(wǎng)絡(luò),BP算法是迄今最成功的神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法?,F(xiàn)實(shí)任務(wù)中使用神經(jīng)網(wǎng)絡(luò)時(shí),大多是在使用 BP
2018-06-19 15:17:15
45171 
谷歌研究人員使用了一種邊緣檢測(cè)算法,該算法可以識(shí)別神經(jīng)突(神經(jīng)元本體的分支)的邊界,以及一種復(fù)發(fā)性卷積神經(jīng)網(wǎng)絡(luò)(復(fù)發(fā)性神經(jīng)網(wǎng)絡(luò)的一個(gè)子類(lèi)),該神經(jīng)網(wǎng)絡(luò)將神經(jīng)元掃描中的像素聚集起來(lái)并突出顯示出來(lái)。
2018-07-20 09:45:42
2667 為更有效地求解隨機(jī)機(jī)會(huì)約束規(guī)劃問(wèn)題,提出一種基于克隆選擇算法( CSA) 、隨機(jī)模擬技術(shù)及神經(jīng)網(wǎng)絡(luò)的混合智能算法。采用隨機(jī)模擬技術(shù)產(chǎn)生隨機(jī)變量樣本矩陣訓(xùn)練反向傳播( BP) 網(wǎng)絡(luò)以逼近不確定函數(shù)
2019-11-27 15:02:56
8 該文提出了一種采用BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)仿真線(xiàn)的方法。首先采用遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),用離線(xiàn)訓(xùn)練后的BP神經(jīng)網(wǎng)絡(luò)逼近傳輸線(xiàn)的傳遞函數(shù),然后用STAM算法以較少的存儲(chǔ)空間實(shí)現(xiàn)BP神經(jīng)網(wǎng)絡(luò)的激勵(lì)函數(shù)近似
2021-02-03 16:26:00
14 神經(jīng)網(wǎng)絡(luò)圖像壓縮是圖像壓縮和神經(jīng)網(wǎng)絡(luò)領(lǐng)域的主要研究方向之一,基于多層前饋神經(jīng)網(wǎng)絡(luò)的壓縮算法在神經(jīng)網(wǎng)絡(luò)壓縮算法中最有代表性。本文結(jié)合國(guó)家某科研項(xiàng)目對(duì)該類(lèi)算法的硬件實(shí)現(xiàn)進(jìn)行研究,具有重要的理論和實(shí)用價(jià)值。
2021-03-22 16:06:54
11 使用脈沖序列進(jìn)行數(shù)據(jù)處理的脈沖神經(jīng)網(wǎng)絡(luò)具有優(yōu)異的低功耗特性,但由于學(xué)習(xí)算法不成熟,多層網(wǎng)絡(luò)練存在收斂困難的問(wèn)題。利用反向傳播網(wǎng)絡(luò)具有學(xué)習(xí)算法成熟和訓(xùn)練速度快的特點(diǎn),設(shè)計(jì)一種遷移學(xué)習(xí)算法。基于反向
2021-05-24 16:03:07
15 基于遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)及其仿真研究說(shuō)明。
2021-05-31 17:01:06
16 通過(guò)對(duì)傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)缺點(diǎn)的分析,從參數(shù)選取、BP算法、激活函數(shù)、網(wǎng)絡(luò)結(jié)構(gòu)4個(gè)方面綜述了其改進(jìn)方法。介紹了各種方法的原理、應(yīng)用背景及其在BP神經(jīng)網(wǎng)絡(luò)中的應(yīng)用,同時(shí)分析了各種方法的優(yōu)缺點(diǎn)。指出不斷提高網(wǎng)絡(luò)的訓(xùn)練速度、收斂性和泛化能力仍是今后的研究方向,并展望了BP神經(jīng)網(wǎng)絡(luò)的研究重點(diǎn)。
2021-06-01 11:28:43
5 ,是對(duì)人腦的抽象、簡(jiǎn)化和模擬,反映人腦的基本特性。人工神經(jīng)網(wǎng)絡(luò)的研究是從人腦的生理結(jié)構(gòu)出發(fā)來(lái)研究人的智能行為,模擬人腦信息處理的功能。它是根植于神經(jīng)科學(xué)、數(shù)學(xué)、統(tǒng)計(jì)學(xué)、物理學(xué)、計(jì)算機(jī)科學(xué)及工程等學(xué)科的一種技術(shù)。
2022-04-11 11:28:35
0 神經(jīng)網(wǎng)絡(luò)算法檢測(cè)戴口罩的人并采取相應(yīng)的行動(dòng)
2022-12-02 17:01:43
1 在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識(shí)。就目前而言,神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實(shí)都是神經(jīng)網(wǎng)絡(luò)。
2023-02-23 09:14:44
4833 卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30
2215 卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù) 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種用于圖像分類(lèi)、物體識(shí)別、語(yǔ)音識(shí)別等領(lǐng)域
2023-08-21 16:49:46
2800 卷積神經(jīng)網(wǎng)絡(luò)算法是機(jī)器算法嗎? 卷積神經(jīng)網(wǎng)絡(luò)算法是機(jī)器算法的一種,它通常被用于圖像、語(yǔ)音、文本等數(shù)據(jù)的處理和分類(lèi)。隨著深度學(xué)習(xí)的興起,卷積神經(jīng)網(wǎng)絡(luò)逐漸成為了圖像、語(yǔ)音等領(lǐng)域中最熱門(mén)的算法之一。 卷積
2023-08-21 16:49:48
1427 卷積神經(jīng)網(wǎng)絡(luò)算法比其他算法好嗎 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)是一種用于圖像識(shí)別和處理等領(lǐng)域的深度學(xué)習(xí)算法。相對(duì)于傳統(tǒng)的圖像識(shí)別算法,如SIFT
2023-08-21 16:49:51
1261 卷積神經(jīng)網(wǎng)絡(luò)算法原理? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)(Deep Learning)的模型,它能夠自動(dòng)地從圖片、音頻、文本等數(shù)據(jù)中提
2023-08-21 16:49:54
2024 卷積神經(jīng)網(wǎng)絡(luò)算法有哪些?? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN) 是一種基于多層感知器(multilayer perceptron, MLP)的深度學(xué)習(xí)
2023-08-21 16:50:01
2369 卷積神經(jīng)網(wǎng)絡(luò)算法的優(yōu)缺點(diǎn) 卷積神經(jīng)網(wǎng)絡(luò)是一種廣泛應(yīng)用于圖像、語(yǔ)音等領(lǐng)域的深度學(xué)習(xí)算法。在過(guò)去幾年里,CNN的研究和應(yīng)用有了飛速的發(fā)展,取得了許多重要的成果,如在圖像分類(lèi)、目標(biāo)識(shí)別、人臉識(shí)別、自然語(yǔ)言
2023-08-21 16:50:04
10959 深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動(dòng)調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對(duì)大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測(cè)和分類(lèi)。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:36
5026 卷積神經(jīng)網(wǎng)絡(luò)算法代碼matlab 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)網(wǎng)絡(luò)模型,其特點(diǎn)是具有卷積層(Convolutional Layer
2023-08-21 16:50:11
1904 卷積神經(jīng)網(wǎng)絡(luò)算法流程 卷積神經(jīng)網(wǎng)絡(luò)模型工作流程? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種廣泛應(yīng)用于目標(biāo)跟蹤、圖像識(shí)別和語(yǔ)音識(shí)別等領(lǐng)域的深度學(xué)習(xí)模型,其
2023-08-21 16:50:19
3703 神經(jīng)網(wǎng)絡(luò)模型是一種通過(guò)模擬生物神經(jīng)元間相互作用的方式實(shí)現(xiàn)信息處理和學(xué)習(xí)的計(jì)算機(jī)模型。它能夠?qū)斎霐?shù)據(jù)進(jìn)行分類(lèi)、回歸、預(yù)測(cè)和聚類(lèi)等任務(wù),已經(jīng)廣泛應(yīng)用于計(jì)算機(jī)視覺(jué)、自然語(yǔ)言處理、語(yǔ)音處理等領(lǐng)域。下面將就神經(jīng)網(wǎng)絡(luò)模型的概念和工作原理,構(gòu)建神經(jīng)網(wǎng)絡(luò)模型的常用方法以及神經(jīng)網(wǎng)絡(luò)模型算法介紹進(jìn)行詳細(xì)探討。
2023-08-28 18:25:27
1524 神經(jīng)網(wǎng)絡(luò)反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練多層前饋神經(jīng)網(wǎng)絡(luò)的監(jiān)督學(xué)習(xí)算法。它通過(guò)最小化損失函數(shù)來(lái)調(diào)整網(wǎng)絡(luò)的權(quán)重和偏置,從而提高網(wǎng)絡(luò)的預(yù)測(cè)性能。本文將詳細(xì)
2024-07-02 14:16:52
1894 神經(jīng)網(wǎng)絡(luò)算法是人工智能領(lǐng)域的一種重要算法,它模仿了人腦神經(jīng)元網(wǎng)絡(luò)的結(jié)構(gòu)和功能,通過(guò)對(duì)大量數(shù)據(jù)進(jìn)行學(xué)習(xí)和訓(xùn)練,實(shí)現(xiàn)對(duì)復(fù)雜問(wèn)題的求解。 神經(jīng)網(wǎng)絡(luò)算法的發(fā)展歷史 神經(jīng)網(wǎng)絡(luò)算法的起源可以追溯到20世紀(jì)40
2024-07-03 09:44:22
2247 神經(jīng)網(wǎng)絡(luò)算法是一種模擬人腦神經(jīng)元結(jié)構(gòu)的計(jì)算模型,廣泛應(yīng)用于機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、圖像識(shí)別、語(yǔ)音識(shí)別等領(lǐng)域。然而,神經(jīng)網(wǎng)絡(luò)算法也存在一些優(yōu)缺點(diǎn)。本文將詳細(xì)分析神經(jīng)網(wǎng)絡(luò)算法的優(yōu)缺點(diǎn)。 一、神經(jīng)網(wǎng)絡(luò)算法
2024-07-03 09:47:47
3781 神經(jīng)網(wǎng)絡(luò)算法是深度學(xué)習(xí)的基礎(chǔ),它們?cè)谠S多領(lǐng)域都有廣泛的應(yīng)用,如圖像識(shí)別、自然語(yǔ)言處理、語(yǔ)音識(shí)別等。神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)有很多種類(lèi)型,每種類(lèi)型都有其獨(dú)特的特點(diǎn)和應(yīng)用場(chǎng)景。以下是對(duì)神經(jīng)網(wǎng)絡(luò)算法結(jié)構(gòu)的介紹
2024-07-03 09:50:47
1475 BP神經(jīng)網(wǎng)絡(luò)算法,即反向傳播(Backpropagation)神經(jīng)網(wǎng)絡(luò)算法,是一種多層前饋神經(jīng)網(wǎng)絡(luò),通過(guò)反向傳播誤差來(lái)訓(xùn)練網(wǎng)絡(luò)權(quán)重。BP神經(jīng)網(wǎng)絡(luò)算法在許多領(lǐng)域都有廣泛的應(yīng)用,如圖像識(shí)別、語(yǔ)音識(shí)別
2024-07-03 09:52:51
1469 反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network,簡(jiǎn)稱(chēng)BP神經(jīng)網(wǎng)絡(luò))是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過(guò)反向傳播算法來(lái)調(diào)整網(wǎng)絡(luò)中的權(quán)重和偏置,以達(dá)到最小化誤差的目的。BP
2024-07-03 11:00:20
1737 神經(jīng)網(wǎng)絡(luò)反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練多層神經(jīng)網(wǎng)絡(luò)的算法,其基本原理是通過(guò)梯度下降法來(lái)最小化損失函數(shù),從而找到網(wǎng)絡(luò)的最優(yōu)權(quán)重和偏置。本文將介紹反向
2024-07-03 11:16:05
2783 神經(jīng)網(wǎng)絡(luò)反向傳播算法(Backpropagation)是一種用于訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)的算法,它通過(guò)計(jì)算損失函數(shù)關(guān)于網(wǎng)絡(luò)參數(shù)的梯度來(lái)更新網(wǎng)絡(luò)的權(quán)重和偏置。反向傳播算法是深度學(xué)習(xí)領(lǐng)域中最常用的優(yōu)化算法之一
2024-07-03 11:17:47
3420 的算法過(guò)程,包括網(wǎng)絡(luò)結(jié)構(gòu)、激活函數(shù)、訓(xùn)練過(guò)程、反向傳播算法、權(quán)重更新策略等。 網(wǎng)絡(luò)結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)由輸入層、隱藏層和輸出層組成,每層包含若干神經(jīng)元。輸入層的神經(jīng)元數(shù)量與問(wèn)題的特征維度相同,輸出層的神經(jīng)元數(shù)量與問(wèn)題的輸出維度相同。隱藏層的數(shù)量和每層的神經(jīng)元數(shù)
2024-07-04 09:45:49
1474 。 初始化網(wǎng)絡(luò)參數(shù) 在BP神經(jīng)網(wǎng)絡(luò)算法中,首先需要初始化網(wǎng)絡(luò)的參數(shù),包括權(quán)重和偏置。權(quán)重是連接神經(jīng)元之間的系數(shù),偏置是神經(jīng)元的閾值。權(quán)重和偏置的初始值通常設(shè)置為小的隨機(jī)數(shù),以避免對(duì)稱(chēng)性問(wèn)題。 1.1 隨機(jī)初始化權(quán)重 權(quán)重的初始化
2024-07-04 09:47:19
1881 BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡(jiǎn)稱(chēng)ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個(gè)基礎(chǔ)且重要的話(huà)題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及未來(lái)發(fā)展等多個(gè)方面,詳細(xì)闡述BP神經(jīng)網(wǎng)絡(luò)與人工神經(jīng)網(wǎng)絡(luò)之間的異同,以期為讀者提供一個(gè)全面而深入的理解。
2024-07-10 15:20:53
3040 在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種
算法。在本文中,我們會(huì)介紹人工
神經(jīng)網(wǎng)絡(luò)的原理和多種
神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工
神經(jīng)網(wǎng)絡(luò) ? 人工
神經(jīng)網(wǎng)絡(luò)模型之所以得名,是因?yàn)?/div>
2025-01-09 10:24:52
2478 
BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
2025-02-12 15:18:19
1426
已全部加載完成
評(píng)論